The LUnar Meteoroid Impact Observer (LUMIO) is a CubeSat mission to a halo orbit at Earth-Moon L2 aimed at observing and characterizing meteoroid impacts on the Lunar farside by detecting their flashes. The mission will launch in 2027 and will have a nominal duration of 1 year, reaching its end-of-life close to the passage of the asteroid Apophis. 99942 Apophis is a well-known Near Earth Asteroid (NEA) that was considered potentially dangerous due to a non-negligible probability of impacting Earth on April 13, 2029. This possibility was ruled out by later observations; nevertheless, its close approach with Earth is an unprecedented opportunity to observe the asteroid, contributing to our knowledge of NEAs, providing insights both from a scientific and planetary defense point of view. This work focuses on a possible extension of the LUMIO mission to flyby and observe the passage of Apophis. Initially, the problem is analyzed in the Circular Restricted Three Body Problem (CRTBP) framework. Here, it is possible to leverage the unstable manifold associated with the spacecraft operational orbit to identify families of trajectories suitable as initial guesses. The optimization is carried out in the high-fidelity Roto-Pulsating Restricted n-Body Problem solving a multiple-shooting problem. Since LUMIO is designed to leverage multiple launch opportunities, at this stage, its exact departure date is unknown. This implies that the initial position of the spacecraft remains undetermined. To overcome this problem, the solutions are continued across the operational halo. In this way, a comprehensive characterization of the fuel cost of the transfer for each possible position on the operational orbit is produced. The work contributes to the broader goals of asteroid exploitation and exploration, in particular offering a methodology for designing trajectories to redirect already existing spacecraft, orbiting Earth-Moon Lagrange points, to observe NEAs entering the Earth-Moon system. This reduces mission costs and enables rapid response to asteroid exploration by reusing existing in-space assets.
Il LUnar Meteoroid Impact Observer (LUMIO) è una missione CubeSat verso un'orbita halo attorno al punto L2 del sistema Terra-Luna, con l'obiettivo di osservare e caratterizzare gli impatti di meteoroidi sulla faccia nascosta della Luna rilevandone i bagliori. La missione verrà lanciata nel 2027 e avrà una durata nominale di un anno, concludendo le sue operazioni in prossimità del passaggio dell' asteroide Apophis. 99942 Apophis, in passato considerato una minaccia, effettuerà il suo passaggio ravvicinato alla Terra il 13 Aprile 2029. Questo evento rappresenta un'opportunità senza precedenti di espandere la nostra conoscenza dei Near Earth Asteroids (NEA) sia dal punto di vista scientifico che della difesa planetaria. Questo lavoro analizza la fattibilità di estendere la missione LUMIO per effettuare un flyby di Apophis. Inizialmente, il problema viene analizzato nel Problema Circolare Ristretto dei Tre Corpi (CRTBP); in questo contesto, è possibile sfruttare la varietà invariante instabile associata all'orbita operativa del satellite per identificare famiglie di traiettorie adatte alla stima iniziale della soluzione. L'ottimizzazione viene poi eseguita risolvendo un problema di multiple-shooting nel Problema Roto-Pulsante Ristretto degli n-Corpi. Poiché LUMIO è compatibile con diverse opportunità di lancio, in questa fase, la data esatta di partenza è sconosciuta. Ciò implica che la posizione iniziale del satellite sulla sua orbita rimane indeterminata. Per risolvere questo problema, le soluzioni vengono propagate lungo l’orbita operativa, consentendo una caratterizzazione completa del costo del trasferimento da ogni possible posizione iniziale. Il lavoro contribuisce agli obiettivi più ampi dell'esplorazione e dello sfruttamento degli asteroidi, offrendo una metodologia per progettare traiettorie che consentano di reindirizzare satelliti già esistenti, in orbita attorno ai punti lagrangiani, per osservare NEA in avvicinamento. Questo approccio riduce i costi delle missioni e permette una risposta rapida all'esplorazione degli asteroidi, riutilizzando risorse spaziali già operative.
LUMIO: assessing the feasibility of a flyby of apophis
Morandi, Giulio
2024/2025
Abstract
The LUnar Meteoroid Impact Observer (LUMIO) is a CubeSat mission to a halo orbit at Earth-Moon L2 aimed at observing and characterizing meteoroid impacts on the Lunar farside by detecting their flashes. The mission will launch in 2027 and will have a nominal duration of 1 year, reaching its end-of-life close to the passage of the asteroid Apophis. 99942 Apophis is a well-known Near Earth Asteroid (NEA) that was considered potentially dangerous due to a non-negligible probability of impacting Earth on April 13, 2029. This possibility was ruled out by later observations; nevertheless, its close approach with Earth is an unprecedented opportunity to observe the asteroid, contributing to our knowledge of NEAs, providing insights both from a scientific and planetary defense point of view. This work focuses on a possible extension of the LUMIO mission to flyby and observe the passage of Apophis. Initially, the problem is analyzed in the Circular Restricted Three Body Problem (CRTBP) framework. Here, it is possible to leverage the unstable manifold associated with the spacecraft operational orbit to identify families of trajectories suitable as initial guesses. The optimization is carried out in the high-fidelity Roto-Pulsating Restricted n-Body Problem solving a multiple-shooting problem. Since LUMIO is designed to leverage multiple launch opportunities, at this stage, its exact departure date is unknown. This implies that the initial position of the spacecraft remains undetermined. To overcome this problem, the solutions are continued across the operational halo. In this way, a comprehensive characterization of the fuel cost of the transfer for each possible position on the operational orbit is produced. The work contributes to the broader goals of asteroid exploitation and exploration, in particular offering a methodology for designing trajectories to redirect already existing spacecraft, orbiting Earth-Moon Lagrange points, to observe NEAs entering the Earth-Moon system. This reduces mission costs and enables rapid response to asteroid exploration by reusing existing in-space assets.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Morandi.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
20.8 MB
Formato
Adobe PDF
|
20.8 MB | Adobe PDF | Visualizza/Apri |
2025_04_Morandi_ExecutiveSummary.pdf
accessibile in internet per tutti
Dimensione
991.92 kB
Formato
Adobe PDF
|
991.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236373