Recovering and effectively utilizing waste heat is a crucial step toward improving energy efficiency and reducing reliance on fossil fuels. In this context, Pumped Thermal Energy Storage (PTES) has emerged as a promising solution, enabling the storage and reuse of thermal energy to enhance system flexibility and sustainability. This study investigates strategies for the decarbonization and economic optimization of a cogeneration plant for self-consumption, with a particular focus on the integration of Pumped Thermal Energy Storage (PTES). The study begins with the development of a benchmark model of the cogeneration plant, calibrated using real operational data to assess its performance in terms of energy efficiency, costs, and emissions. Various control strategies are then explored to optimize plant operation, aiming to minimize operating costs while maintaining high energy efficiency. The impact of renewable energy integration is also examined by evaluating the effects of a photovoltaic (PV) system on the operational strategy of the cogeneration unit. Furthermore, thermal energy storage solutions are introduced to enhance system flexibility, reducing gas consumption and emissions by recovering and reusing waste heat. In particular, a Mixed-Integer Linear Programming (MILP) model is implemented to optimize energy flows, considering both economic and environmental aspects of the system. The results demonstrate that an optimized control strategy can lead to a significant reduction in total operating costs, while PTES integration further enhances system performance by maximizing the utilization of thermal energy and reducing overall emissions. This study highlights the potential benefits of a combined approach involving cogeneration, renewable energy sources, and thermal storage, contributing to a more sustainable and cost-effective energy system.

Il recupero e il riutilizzo efficiente del calore di scarto sono fondamentali per migliorare l’efficienza energetica e ridurre la dipendenza dai combustibili fossili. In questo contesto, l’Accumulo Termico a Pompaggio (PTES) rappresenta una soluzione promettente, permettendo l’accumulo e il riutilizzo dell’energia termica per aumentare la flessibilità e la sostenibilità dei sistemi energetici. Questo studio analizza diverse strategie per la decarbonizzazione e l’ottimizzazione economica di un impianto di cogenerazione destinato all’autoconsumo, con particolare attenzione all’integrazione del PTES. Si sviluppa, innanzitutto, un modello di riferimento dell’impianto, calibrato su dati operativi reali, per valutarne le prestazioni in termini di efficienza energetica, costi ed emissioni. Successivamente, vengono esplorate strategie di controllo per ottimizzare il funzionamento dell’impianto, riducendo i costi operativi e mantenendo elevata l’efficienza. Si analizza inoltre l’integrazione di fonti rinnovabili, valutando l’impatto di un impianto fotovoltaico sulla strategia operativa della cogenerazione. L’introduzione di soluzioni di accumulo termico migliora la flessibilità del sistema, riducendo il consumo di gas e le emissioni attraverso il recupero e il riutilizzo del calore di scarto. In particolare, si implementa un modello di Mixed-Integer Linear Programming (MILP) per ottimizzare i flussi energetici, considerando sia gli aspetti economici che ambientali. I risultati dimostrano che una strategia di controllo ottimizzata può ridurre significativamente i costi operativi, mentre l’integrazione del PTES migliora ulteriormente le prestazioni del sistema, massimizzando l’uso dell’energia termica e riducendo le emissioni globali. Lo studio evidenzia i vantaggi di un approccio combinato tra cogenerazione, rinnovabili e accumulo termico, per un sistema energetico più sostenibile ed efficiente.

Strategies for decarbonization and economic optimization of a cogeneration power plant with integration of pumped thermal energy storage

Azoti, Federico Maria
2023/2024

Abstract

Recovering and effectively utilizing waste heat is a crucial step toward improving energy efficiency and reducing reliance on fossil fuels. In this context, Pumped Thermal Energy Storage (PTES) has emerged as a promising solution, enabling the storage and reuse of thermal energy to enhance system flexibility and sustainability. This study investigates strategies for the decarbonization and economic optimization of a cogeneration plant for self-consumption, with a particular focus on the integration of Pumped Thermal Energy Storage (PTES). The study begins with the development of a benchmark model of the cogeneration plant, calibrated using real operational data to assess its performance in terms of energy efficiency, costs, and emissions. Various control strategies are then explored to optimize plant operation, aiming to minimize operating costs while maintaining high energy efficiency. The impact of renewable energy integration is also examined by evaluating the effects of a photovoltaic (PV) system on the operational strategy of the cogeneration unit. Furthermore, thermal energy storage solutions are introduced to enhance system flexibility, reducing gas consumption and emissions by recovering and reusing waste heat. In particular, a Mixed-Integer Linear Programming (MILP) model is implemented to optimize energy flows, considering both economic and environmental aspects of the system. The results demonstrate that an optimized control strategy can lead to a significant reduction in total operating costs, while PTES integration further enhances system performance by maximizing the utilization of thermal energy and reducing overall emissions. This study highlights the potential benefits of a combined approach involving cogeneration, renewable energy sources, and thermal storage, contributing to a more sustainable and cost-effective energy system.
ALFANI, DARIO
ING - Scuola di Ingegneria Industriale e dell'Informazione
3-apr-2025
2023/2024
Il recupero e il riutilizzo efficiente del calore di scarto sono fondamentali per migliorare l’efficienza energetica e ridurre la dipendenza dai combustibili fossili. In questo contesto, l’Accumulo Termico a Pompaggio (PTES) rappresenta una soluzione promettente, permettendo l’accumulo e il riutilizzo dell’energia termica per aumentare la flessibilità e la sostenibilità dei sistemi energetici. Questo studio analizza diverse strategie per la decarbonizzazione e l’ottimizzazione economica di un impianto di cogenerazione destinato all’autoconsumo, con particolare attenzione all’integrazione del PTES. Si sviluppa, innanzitutto, un modello di riferimento dell’impianto, calibrato su dati operativi reali, per valutarne le prestazioni in termini di efficienza energetica, costi ed emissioni. Successivamente, vengono esplorate strategie di controllo per ottimizzare il funzionamento dell’impianto, riducendo i costi operativi e mantenendo elevata l’efficienza. Si analizza inoltre l’integrazione di fonti rinnovabili, valutando l’impatto di un impianto fotovoltaico sulla strategia operativa della cogenerazione. L’introduzione di soluzioni di accumulo termico migliora la flessibilità del sistema, riducendo il consumo di gas e le emissioni attraverso il recupero e il riutilizzo del calore di scarto. In particolare, si implementa un modello di Mixed-Integer Linear Programming (MILP) per ottimizzare i flussi energetici, considerando sia gli aspetti economici che ambientali. I risultati dimostrano che una strategia di controllo ottimizzata può ridurre significativamente i costi operativi, mentre l’integrazione del PTES migliora ulteriormente le prestazioni del sistema, massimizzando l’uso dell’energia termica e riducendo le emissioni globali. Lo studio evidenzia i vantaggi di un approccio combinato tra cogenerazione, rinnovabili e accumulo termico, per un sistema energetico più sostenibile ed efficiente.
File allegati
File Dimensione Formato  
2025_04_Azoti_ExecutiveSummary.pdf

accessibile in internet per tutti

Descrizione: Executive Summary
Dimensione 5.36 MB
Formato Adobe PDF
5.36 MB Adobe PDF Visualizza/Apri
2025_04_Azoti.pdf

accessibile in internet solo dagli utenti autorizzati

Descrizione: Tesi
Dimensione 20.31 MB
Formato Adobe PDF
20.31 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/236408