Starting from the last decade, the collection, analysis and monetization of data have been discussed with growing awareness: platform users are becoming conscious of data’s influence on their behavior and privacy issues, as well as process transparency, leading to a re-evaluation of Data Ownership. This shift particularly affects companies whose core business relies on data integration and enrichment — the so-called “Data Brokers”. Meanwhile, digital platforms have become the main collectors of user data, reinforcing their interdependence with Data Brokers. Given this strong connection between Data Brokering and Platform-based ecosystems and considering also our previous knowledge in the Platform Thinking’s field, this thesis examines the industry of Data Brokering and Data intermediation services with a central research question: "How do Platform Models manage the Personal Data Market, across the landscape shaped by Data Brokering and Data Intermediation Services?”. To accomplish this goal, the research process follows a qualitative approach, integrating a multiple case study analysis with expert interviews, combining secondary sources with primary data. An iterative methodology enables the identification of key contextual attributes and value creation triggers, facilitating the development of theoretical frameworks and practical assessments through an inductive process. From one hand, the study takes an external perspective, understanding the Data Brokering’s role within digital platform ecosystems and the critical challenges that it needs to face in this environment. Secondly, the study shifts to an internal dimension, identifying three key business models with associated value drivers, deeply outlining the strengths and weaknesses of each strategic approach. In conclusion, our thesis delves into the Data Brokering industry with a strategic lens, uncovering how Platform-based mechanisms can serve as practical tools to build a sustainable business model and ultimately a concrete competitive advantage on the market. Clarifying even the possible limitations of the study, the overarching objective lies in contributing to the advancement of research on Data-Driven business strategies and platforms, addressing the challenges posed by evolving regulatory frameworks, societal expectations, and the complexities of decentralization-oriented technological advancements.
A partire dall'ultimo decennio, la raccolta, l'analisi e la monetizzazione dei dati iniziano ad essere discusse con maggiore consapevolezza: gli utenti delle piattaforme diventano più consapevoli dell'influenza dei dati sul loro comportamento e delle questioni relative alla privacy, ma anche alla trasparenza dei processi, portando a una rivalutazione della Data Ownership. Questo cambiamento colpisce in particolare le aziende il cui core business si basa sull'integrazione e l'arricchimento dei dati, i cosiddetti "Data Broker". Nel frattempo, le piattaforme digitali sono diventate i principali collezionatori dei dati degli utenti, rafforzando la loro interdipendenza con i Data Brokers. Data questa forte connessione tra Data Brokering ed ecosistemi basati su piattaforme, considerando anche le nostre precedenti conoscenze nel campo del Platform Thinking, questa tesi esamina il mercato del Data Brokering e dei Servizi di Intermediazione dei Dati con una domanda di ricerca centrale: "In che modo i Modelli di Piattaforma gestiscono il Mercato dei Dati Personali nel panorama modellato dai servizi di Data Brokering e di Intermediazione dei Dati?". Per raggiungere questo obiettivo, il processo di ricerca segue un approccio qualitativo, integrando un'analisi di casi di studio multipli con interviste di esperti, combinando fonti secondarie con dati primari. Una metodologia iterativa consente l'identificazione di attributi contestuali chiave e triggers nella creazione di valore, facilitando lo sviluppo di frameworks teorici e valutazioni pratiche attraverso un processo induttivo. Da un lato, lo studio adotta una prospettiva esterna, comprendendo il ruolo del Data Brokering all'interno degli ecosistemi delle piattaforme digitali e le sfide critiche che deve affrontare in questo ambiente. In secondo luogo, lo studio si sposta su una dimensione interna, identificando tre modelli chiave con i value drivers associati, delineando in modo approfondito i punti di forza e di debolezza di ciascun approccio strategico. In conclusione, la nostra tesi approfondisce il Data Brokering con una lente strategica, scoprendo come i meccanismi basati sulle piattaforme possano fungere da strumenti pratici per costruire un modello aziendale sostenibile e, in definitiva, un concreto vantaggio competitivo sul mercato. Chiarendo anche le possibili limitazioni dello studio, il fine complessivo risiede nel contribuire al progresso della ricerca su strategie di business e piattaforme basate sui dati, affrontando le sfide poste dall'evoluzione dei quadri normativi, dalle aspettative della società e dalle complessità dei progressi tecnologici orientati alla decentralizzazione.
Data brokering and data intermediation services: how platform models manage the personal data market
ONORATI, ALESSANDRO;Boschetti, Matteo
2023/2024
Abstract
Starting from the last decade, the collection, analysis and monetization of data have been discussed with growing awareness: platform users are becoming conscious of data’s influence on their behavior and privacy issues, as well as process transparency, leading to a re-evaluation of Data Ownership. This shift particularly affects companies whose core business relies on data integration and enrichment — the so-called “Data Brokers”. Meanwhile, digital platforms have become the main collectors of user data, reinforcing their interdependence with Data Brokers. Given this strong connection between Data Brokering and Platform-based ecosystems and considering also our previous knowledge in the Platform Thinking’s field, this thesis examines the industry of Data Brokering and Data intermediation services with a central research question: "How do Platform Models manage the Personal Data Market, across the landscape shaped by Data Brokering and Data Intermediation Services?”. To accomplish this goal, the research process follows a qualitative approach, integrating a multiple case study analysis with expert interviews, combining secondary sources with primary data. An iterative methodology enables the identification of key contextual attributes and value creation triggers, facilitating the development of theoretical frameworks and practical assessments through an inductive process. From one hand, the study takes an external perspective, understanding the Data Brokering’s role within digital platform ecosystems and the critical challenges that it needs to face in this environment. Secondly, the study shifts to an internal dimension, identifying three key business models with associated value drivers, deeply outlining the strengths and weaknesses of each strategic approach. In conclusion, our thesis delves into the Data Brokering industry with a strategic lens, uncovering how Platform-based mechanisms can serve as practical tools to build a sustainable business model and ultimately a concrete competitive advantage on the market. Clarifying even the possible limitations of the study, the overarching objective lies in contributing to the advancement of research on Data-Driven business strategies and platforms, addressing the challenges posed by evolving regulatory frameworks, societal expectations, and the complexities of decentralization-oriented technological advancements.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Boschetti_Onorati_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri |
2025_04_Boschetti_Onorati_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236409