Pancreatic islet transplantation represents a promising therapeutic alternative for type 1 diabetes (T1D), but its clinical success is limited by donor scarcity and the need for chronic immunosuppression. In this context, the use of innovative nanomaterials for localized drug delivery of immunosuppressants offers a significant opportunity to improve graft survival and reduce systemic side effects. This thesis explores the application of Drug-Integrating Amphiphilic Nano-Assemblies (DIANAs), a self-assembling polymeric nanoparticle system, for controlled and targeted anti-inflammatory and immunosuppressive drugs release. DIANAs are fabricated from amphiphilic di-block copolymers belonging to either the poly(ethyleneglycol)-poly(propylenesulfide) (PEG-PPS) or the poly(ethylene glycol)-oligo(ethylene sulfide) (PEG-OES) families. These copolymers self-assemble in water, forming stable nanomicelles (nMIC) and nanofibrils(nFIB) respectively, which efficiently solubilize and stabilize hydrophobic drugs such as cyclosporineA (CsA), Rapamycin (Rapa), and Dexamethasone-Palmitate (DexP). These nanoparticles provide sustained drug release for up to two weeks in vitro, efficient uptake into immune cells, morphology-controllable biodistribution, and effective immune suppression at lower dosages than unformulated drugs. This work presents findings on two key applications of DIANAs: (i) the effect of nMIC loading and targeted delivery of DexP in vitro and in vivo, and (ii) the internalization of Rapa-loaded nFIB into immunomodulatory cells (Mesenchymal Stem Cells, MSC) to enhance their localized effects. The sustained release and efficacy of nMICDexP were tested in vitro on macrophages, demonstrating a significant reduction in IL-6 secretion. In vivo, an allogeneic mouse skin transplant model was used to assess the therapeutic potential of nMICDexP, showing improved graft survival compared to the unformulated drug. Furthermore, nFIB-Rapa were successfully internalized into Mesenchymal Stem Cells (MSC), and their retention was confirmed by fluorescence imaging. Aggregation studies showed that MSC containing nFIB (MSC-nFIB) effectively clustered around human pancreatic islets, suggesting a potential for direct cellular interaction and enhanced localized immunomoprotection of transplanted islets. In preclinical models of T1D, co-transplantation of allogeneic pancreatic islets with MSC−nFIB-Rapa resulted in prolonged graft survival and improved glucose homeostasis respect to control treatments. Additionally, in vivo biodistribution analysis revealed that intraperitoneal (IP) injection of MSC-nFIB leads to their preferential accumulation in the pancreas, highlighting a novel and promising strategy for targeted auto-immune protection of pancreatic islet in diabetes prevention. The findings suggest that DIANAs represent an ideal platform for the development of localized immunosuppression and anti-inflammatory (LISAI) therapies, with potential applications in pancreatic islet transplantation and other conditions that benefit of localized drug delivery.
Il trapianto di isole pancreatiche rappresenta un’alternativa terapeutica promettente per il diabete di tipo 1 (T1D), ma il suo successo clinico è limitato dalla scarsità di donatori e dalla necessità di immunosoppressione cronica. In questo contesto, l’uso di nanomateriali innovativi per il rilascio localizzato di farmaci immunosoppressori offre un’opportunità significativa per migliorare la sopravvivenza del trapianto e ridurre gli effetti collaterali. Questa tesi esplora l’applicazione delle Drug-Integrating Amphiphilic Nano-Assemblies (DIANAs), un sistema di nanoparticelle polimeriche autoassemblanti, per il rilascio controllato e mirato di farmaci anti-infiammatori e di farmaci immunosopressori. Le DIANAs sono costituite da copolimeri di-blocco anfifilici appartenenti alle famiglie del poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) o del poly(ethylene glycol)-oligo(ethylene sulfide) (PEG-OES). Questi copolimeri si autoassemblano in acqua, formando rispettivamente stabili nanomicelle (nMIC) e nanofibrille (nFIB), che solubilizzano e stabilizzano efficacemente farmaci idrofobici come Ciclosporina A (CsA), Rapamicina (Rapa) e Dexametasone-Palmitato (DexP). Queste nanoparticelle garantiscono un rilascio prolungato del farmaco fino a due settimane in vitro, un’efficace internalizzazione nelle cellule immunitarie, una biodistribuzione controllabile in base alla loro morfologia e un’immunosoppressione efficace a dosaggi inferiori rispetto ai farmaci liberi. Questo lavoro presenta risultati su due principali applicazioni delle DIANAs: (i) l’effetto delle nMIC caricate con DexP e la sua veicolazione mirata in vitro e in vivo; (ii) l’internalizzazione di nFIB caricate con Rapa nelle cellule staminali mesenchimali (MSC) per potenziarne gli effetti immunomodulatori localizzati. L’efficacia e il rilascio prolungato di nMICDexP sono stati testati in vitro sui macrofagi, dimostrando una significativa riduzione della secrezione di IL-6. In vivo, un modello murino di trapianto cutaneo allogenico è stato utilizzato per valutare il potenziale terapeutico dinMICDexP, mostrando un miglioramento nella sopravvivenza del trapianto rispetto al farmaco libero. Inoltre, le nFIBRapa sono state internalizzate con successo nelle cellule staminali mesenchimali (MSC) e la loro presenza è stata confermata tramite imaging a fluorescenza. Studi di aggregazione hanno mostrato che le MSC contenenti nFIB (MSC-nFIB) si raggruppano attivamente attorno alle isole pancreatiche umane, suggerendo un potenziale per un’interazione cellulare diretta e una migliore immunoprotezione localizzata alle isole pancreatiche. Nei modelli preclinici di T1D, il co-trapianto di isole pancreatiche allogeniche con MSC-nFIB-Rapa ha portato a un prolungamento della sopravvivenza dell’innesto e a un miglioramento del livello di glicemia nel sangue rispetto ai trattamenti di controllo. Inoltre, l’analisi della biodistribuzione in vivo ha rivelato che un’iniezione intraperitoneale (IP) di MSC-nFIB ne favorisce l’accumulo preferenziale nel pancreas, evidenziando una nuova strategia promettente per la protezione autoimmunitaria mirata delle isole pancreatiche nella prevenzione del diabete di tipo 1. I risultati suggeriscono che le DIANAs rappresentano una piattaforma ideale per losviluppo di una terapia di immunosoppressione localizzata e antinfiammatoria (LISAI), con potenziali applicazioni nel trapianto di isole pancreatiche e in altre patologie che possono trarre beneficio da una veicolazione di farmaco localizzata e controllata.
Nanotechnology-based immunotherapy: drug delivery and polymeric nanoparticles for immune regulation in cell and tissue transplantation
Palummieri, Giulio
2023/2024
Abstract
Pancreatic islet transplantation represents a promising therapeutic alternative for type 1 diabetes (T1D), but its clinical success is limited by donor scarcity and the need for chronic immunosuppression. In this context, the use of innovative nanomaterials for localized drug delivery of immunosuppressants offers a significant opportunity to improve graft survival and reduce systemic side effects. This thesis explores the application of Drug-Integrating Amphiphilic Nano-Assemblies (DIANAs), a self-assembling polymeric nanoparticle system, for controlled and targeted anti-inflammatory and immunosuppressive drugs release. DIANAs are fabricated from amphiphilic di-block copolymers belonging to either the poly(ethyleneglycol)-poly(propylenesulfide) (PEG-PPS) or the poly(ethylene glycol)-oligo(ethylene sulfide) (PEG-OES) families. These copolymers self-assemble in water, forming stable nanomicelles (nMIC) and nanofibrils(nFIB) respectively, which efficiently solubilize and stabilize hydrophobic drugs such as cyclosporineA (CsA), Rapamycin (Rapa), and Dexamethasone-Palmitate (DexP). These nanoparticles provide sustained drug release for up to two weeks in vitro, efficient uptake into immune cells, morphology-controllable biodistribution, and effective immune suppression at lower dosages than unformulated drugs. This work presents findings on two key applications of DIANAs: (i) the effect of nMIC loading and targeted delivery of DexP in vitro and in vivo, and (ii) the internalization of Rapa-loaded nFIB into immunomodulatory cells (Mesenchymal Stem Cells, MSC) to enhance their localized effects. The sustained release and efficacy of nMICDexP were tested in vitro on macrophages, demonstrating a significant reduction in IL-6 secretion. In vivo, an allogeneic mouse skin transplant model was used to assess the therapeutic potential of nMICDexP, showing improved graft survival compared to the unformulated drug. Furthermore, nFIB-Rapa were successfully internalized into Mesenchymal Stem Cells (MSC), and their retention was confirmed by fluorescence imaging. Aggregation studies showed that MSC containing nFIB (MSC-nFIB) effectively clustered around human pancreatic islets, suggesting a potential for direct cellular interaction and enhanced localized immunomoprotection of transplanted islets. In preclinical models of T1D, co-transplantation of allogeneic pancreatic islets with MSC−nFIB-Rapa resulted in prolonged graft survival and improved glucose homeostasis respect to control treatments. Additionally, in vivo biodistribution analysis revealed that intraperitoneal (IP) injection of MSC-nFIB leads to their preferential accumulation in the pancreas, highlighting a novel and promising strategy for targeted auto-immune protection of pancreatic islet in diabetes prevention. The findings suggest that DIANAs represent an ideal platform for the development of localized immunosuppression and anti-inflammatory (LISAI) therapies, with potential applications in pancreatic islet transplantation and other conditions that benefit of localized drug delivery.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Palummieri_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Giulio Palummieri Executive Summary
Dimensione
4.52 MB
Formato
Adobe PDF
|
4.52 MB | Adobe PDF | Visualizza/Apri |
2025_04_Palummieri_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Giulio Palummieri Tesi
Dimensione
40.06 MB
Formato
Adobe PDF
|
40.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236483