The ability to predict noise is fundamental for the technological development of the aviation industry. The recent sparkling interest in Urban Air Mobility (UAM) as a new means of transportation has posed the problem of noise reduction in urban environments. State-of-the-art computational methods allow the free-field prediction of tonal and broadband noise, however, fewer alternatives for complex environments are being developed. This work presents a computational method that allows aeroacoustic computations in such environments, in either homogeneous or non-homogeneous atmospheres, as well as in the presence of reflecting surfaces. The implementation is based on an aeroacoustic hybrid approach, that requires the pressure distribution over a surface enclosing the noise source. This can be obtained via Computational Fluid Dynamics (CFD) simulations of arbitrary degrees of fidelity. Subsequently, noise is propagated using Gaussian beams and evaluated at the receiver location. The method is verified using analytical solutions and reference data, and validated against computational results.
La capacità di calcolare il rumore è fondamentale per lo sviluppo tecnologico dell’industria aeronautica. Il recente crescente interesse per la mobilità aerea urbana (UAM) ha sollevato il problema della riduzione del rumore negli ambienti urbani. I metodi computazionali odierni permettono la previsione in campo libero del rumore tonale e a banda larga, tuttavia, sono state sviluppate poche alternative per ambienti complessi. Questo lavoro presenta un metodo computazionale che consente di effettuare calcoli aeroacustici in tali ambienti, sia in atmosfere omogenee che non omogenee, nonché in presenza di superfici riflettenti. L’implementazione si basa su un approccio aeroacustico ibrido, che richiede la distribuzione della pressione su una superficie che racchiude la sorgente di rumore. Quest’ultima può essere ottenuta tramite simulazioni di Fluidodinamica Computazionale (CFD) di vari livelli di accuratezza. Successivamente, il rumore viene propagato utilizzando fasci gaussiani e valutato ad un ricevitore. Il metodo è stato verificato confrontandolo con soluzioni analitiche e di riferimento, e validato tramite risultati computazionali.
Gaussian beam tracing for noise propagation in complex environments
Bocelli, Davide
2023/2024
Abstract
The ability to predict noise is fundamental for the technological development of the aviation industry. The recent sparkling interest in Urban Air Mobility (UAM) as a new means of transportation has posed the problem of noise reduction in urban environments. State-of-the-art computational methods allow the free-field prediction of tonal and broadband noise, however, fewer alternatives for complex environments are being developed. This work presents a computational method that allows aeroacoustic computations in such environments, in either homogeneous or non-homogeneous atmospheres, as well as in the presence of reflecting surfaces. The implementation is based on an aeroacoustic hybrid approach, that requires the pressure distribution over a surface enclosing the noise source. This can be obtained via Computational Fluid Dynamics (CFD) simulations of arbitrary degrees of fidelity. Subsequently, noise is propagated using Gaussian beams and evaluated at the receiver location. The method is verified using analytical solutions and reference data, and validated against computational results.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Bocelli.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
4.05 MB
Formato
Adobe PDF
|
4.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236539