The future of space exploration will see heavy spacecraft being sent far into space, toward the first person to set foot on another planet. This requires better and better propulsion technologies paired with reliability and security. Chemical propulsion is close to the physical limit set by thermochemistry. Nuclear Electric Propulsion (NEP) is the new technology to be investigated. ESA has proposed a study on NEP, to set the requirements that will lead future developments. In this context, three different missions are analyzed, around Earth and towards Mars. The study is set as an optimization problem, with the objective of obtaining relevant parameters such as ∆v and the transfer time. Different control strategies are implemented, such as the Sims-Flanagan Transcription method or the Modified Equinoctial Element variational equations. The control problem is reformulated in a non-linear framework using PyGMO, a scientific Python library for massively parallel optimization, where the decision vector, the constraint and the objective functions are defined. An hybrid approach is chosen to compute the solution, combining a gradient-based method, SNOPT, and a stochastic algorithm, MBH. The optimized results show that for the mission between the LEO and GEO orbits a spacecraft with 100 N thrust, 2,500 s specific impulse can reliably carry a payload, being perfect for studying and developing NEP technology. Toward Mars, when the consumed mass of the propellant is optimized, the total ∆v required is 26,848.13 m/s. To comply with the three-month requirement for manned interplanetary transfers, the transfer time is optimized, resulting in a total ∆v of at least 50,000 m/s.
Il futuro dell’esplorazione spaziale vedrà sempre più pesanti navicelle venire spedite lontano nello spazio, verso la prima persona a mettere piede su un altro pianeta. Questo richiede un miglioramento delle tecnologie di propulsione appaiato a sicurezza e affidabilità. La propulsione chimica è vicina al raggiungimento del suo limite fisico, determinato dalla termochimica. La propulsione nucleare elettrica (NEP) è la nuova tecnologia a dover essere sviluppata. ESA ha proposto uno studio su NEP, per fissare i parametri che guideranno gli sviluppi futuri. In questo contesto, tre differenti missioni sono state analizzate, intorno alla Terra e verso Marte. Lo studio è impostato come un problema di ottimizzazione con l’obiettivo di ricavare parametri fondamentali come il ∆v e il tempo di trasferimento. Differenti strategie di controllo sono state implementate, come il Sims- Flanagan Transcription metodo o i metodi variazionali applicati ai Modified Equinoctial Elements. Il problema di controllo è riscritto in formula non lineare usando PyGMO, libreria scientifica di Python per l’ottimizzazione parallela massiva, dove il vettore decisionale, le funzioni di vincolo e di obiettivo, sono definiti. Un approccio ibrido è stato scelto per calcolare la soluzione, combinando un metodo basato sul gradiente, SNOPT, e un algoritmo stocastico, MBH. I risultati ottimizzati mostrano che, per la missione tra le orbite LEO e GEO, una navicella con 100 N di spinta, 2,500 s di impulso specifico può consistentemente trasportare un payload, essendo perfetta per lo studio e lo sviluppo della tecnologia NEP. Verso Marte, quando viene ottimizzata la massa di propellente con- sumata, il ∆v totale richiesto è di 26,848.13 m/s. Per rispettare il limite di tre mesi fissato per un trasferimento interplanetario con equipaggio, viene ottimizzato il tempo di trasferimento, risultando in un ∆v totale di minimo 50,000 m/s.
Preliminary orbit optimization of space missions powered by N.E.P.
Milesi, Lorenzo
2023/2024
Abstract
The future of space exploration will see heavy spacecraft being sent far into space, toward the first person to set foot on another planet. This requires better and better propulsion technologies paired with reliability and security. Chemical propulsion is close to the physical limit set by thermochemistry. Nuclear Electric Propulsion (NEP) is the new technology to be investigated. ESA has proposed a study on NEP, to set the requirements that will lead future developments. In this context, three different missions are analyzed, around Earth and towards Mars. The study is set as an optimization problem, with the objective of obtaining relevant parameters such as ∆v and the transfer time. Different control strategies are implemented, such as the Sims-Flanagan Transcription method or the Modified Equinoctial Element variational equations. The control problem is reformulated in a non-linear framework using PyGMO, a scientific Python library for massively parallel optimization, where the decision vector, the constraint and the objective functions are defined. An hybrid approach is chosen to compute the solution, combining a gradient-based method, SNOPT, and a stochastic algorithm, MBH. The optimized results show that for the mission between the LEO and GEO orbits a spacecraft with 100 N thrust, 2,500 s specific impulse can reliably carry a payload, being perfect for studying and developing NEP technology. Toward Mars, when the consumed mass of the propellant is optimized, the total ∆v required is 26,848.13 m/s. To comply with the three-month requirement for manned interplanetary transfers, the transfer time is optimized, resulting in a total ∆v of at least 50,000 m/s.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Milesi.pdf
accessibile in internet per tutti
Descrizione: Text of the thesis
Dimensione
1.91 MB
Formato
Adobe PDF
|
1.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236551