Electromagnetic optics has witnessed a rapid and fruitful progress on account of the advanced nanofabrication techniques that have enabled the realization of optical devices with nanometric dimensions (1 nm = 10−9 m), resulting in a transformative switch from diffraction-limited and bulky systems (comprising lenses, digital electronic components...) to flat optical platforms based on compact planar configurations of subwavelength antennas. Simultaneously, numerous commercial software and computational tools have enabled the implementation of sophisticated numerical algorithms for solving the mathematical equations that govern the interaction of light with matter across the entire range of the electromagnetic spectrum. A particularly rich spectral window is the so-called THz region, which overlaps with the characteristic time scales of a vast variety of physical processes including charge carrier dynamics in nanostructures, vibrational modes in organic substances, lattice oscillations in crystals, or intraband transitions in semiconductors. Light waves with THz frequencies are thus a key ingredient to optically probe and exploit these fundamental phenomena, but the high THz atmospheric absorption has supposed a major obstacle in the development of powerful, broadband and tunable THz sources. In this thesis, all-dielectric nanoantennas are designed and employed as the building blocks of ultrathin THz metasurfaces which, through their effective optical nonlinear susceptibility, are able to efficiently generate THz radiation from a femtosecond optical beam, readily available from table-top lasers operating at the near-infrared. The proposed semi-analytical and computational modeling approaches demonstrate their validity to describe second-order nonlinear effects in different material platforms. This knowledge is applied to enhance THz generation by nanostructuring thin films as well as to achieve a highly sensitive all-optical control of THz emission directionality. In addition, driven by the emergent field of analog optical computing, the potential of polar semiconductors to perform event recognition via THz generation is proved. These findings offer the opportunity to explore, in tight collaboration with experimental research, innovative pathways to uncover novel insights and practical solutions for versatile and scalable next-generation photonic technologies.
L’ottica elettromagnetica ha avuto un rapido e fruttuoso progresso grazie alle avanzate tecniche di nanofabbricazione che hanno permesso di realizzare dispositivi ottici di dimensioni nanometriche (1 nm = 10−9 m). Questi dispositivi rappresentano un passaggio trasformativo da sistemi limitati dalla diffrazione e di dimensioni maggiori (lenti, componenti elettronici digitali...) a piattaforme ottiche compatte e piatte di dimensioni caratteristiche inferiori alla lunghezza d’onda. Allo stesso tempo, numerosi software commerciali e strumenti di calcolo hanno reso possibile, attraverso sofisticati algoritmi numerici, la risoluzione delle equazioni matematiche che regolano l’interazione tra luce e materia nell’intero spettro elettromagnetico. Una finestra spettrale particolarmente ricca è nota come la regione di THz, che si sovrappone alle scale temporali caratteristiche di processi fisici di vario tipo, come la dinamica dei portatori di carica nelle nanostrutture, i modi vibrazionali nelle sostanze organiche, le oscillazioni nelle reti cristalline o le transizioni intrabanda nei semiconduttori. Pertanto, la radiazione di frequenza THz è un elemento chiave per l’analisi ottica e lo sfruttamento di questi fenomeni fondamentali; l’elevato assorbimento atmosferico presente in questa regione, però, ha rappresentato un ostacolo per lo sviluppo di sorgenti ad alta potenza, a banda larga e sintonizzabili a diverse lunghezze d’onda. In questa tesi, sono state progettate nanoantenne dielettriche come elementi costitutivi di metasuperfici THz ultrasottili che, grazie alla loro suscettibilità ottica non lineare, generano efficacemente radiazione THz dagli impulsi a più alta frequenza (infrarossi) ottenibili dai laser di laboratorio convenzionali. In questo lavoro si dimostra che i metodi di modellazione semi-analitica e computazionale proposti possono descrivere gli effetti non lineari di secondo ordine in diversi materiali. Queste conoscenze vengono quindi utilizzate per migliorare la generazione di radiazione THz attraverso la nanostrutturazione e per controllare otticamente la direzione di propagazione delle onde THz attraverso superfici sottili. Inoltre, visti i progressi nell’area di computazione ottica analogica, viene analizzato il potenziale di sistemi a frequenza THz costruiti con semiconduttori polari per rilevare eventi ottici nel dominio del tempo. Questi risultati, in stretta collaborazione con la ricerca sperimentale, offrono la possibilità di esplorare nuove conoscenze e soluzioni pratiche con strumenti innovativi, finalizzati alla costruzione di tecnologie fotoniche adattive ed espansive di prossima generazione.
Modeling and design of nonlinear all-dielectric metastructures for THz nanophotonics
Arregui Leon, Unai
2024/2025
Abstract
Electromagnetic optics has witnessed a rapid and fruitful progress on account of the advanced nanofabrication techniques that have enabled the realization of optical devices with nanometric dimensions (1 nm = 10−9 m), resulting in a transformative switch from diffraction-limited and bulky systems (comprising lenses, digital electronic components...) to flat optical platforms based on compact planar configurations of subwavelength antennas. Simultaneously, numerous commercial software and computational tools have enabled the implementation of sophisticated numerical algorithms for solving the mathematical equations that govern the interaction of light with matter across the entire range of the electromagnetic spectrum. A particularly rich spectral window is the so-called THz region, which overlaps with the characteristic time scales of a vast variety of physical processes including charge carrier dynamics in nanostructures, vibrational modes in organic substances, lattice oscillations in crystals, or intraband transitions in semiconductors. Light waves with THz frequencies are thus a key ingredient to optically probe and exploit these fundamental phenomena, but the high THz atmospheric absorption has supposed a major obstacle in the development of powerful, broadband and tunable THz sources. In this thesis, all-dielectric nanoantennas are designed and employed as the building blocks of ultrathin THz metasurfaces which, through their effective optical nonlinear susceptibility, are able to efficiently generate THz radiation from a femtosecond optical beam, readily available from table-top lasers operating at the near-infrared. The proposed semi-analytical and computational modeling approaches demonstrate their validity to describe second-order nonlinear effects in different material platforms. This knowledge is applied to enhance THz generation by nanostructuring thin films as well as to achieve a highly sensitive all-optical control of THz emission directionality. In addition, driven by the emergent field of analog optical computing, the potential of polar semiconductors to perform event recognition via THz generation is proved. These findings offer the opportunity to explore, in tight collaboration with experimental research, innovative pathways to uncover novel insights and practical solutions for versatile and scalable next-generation photonic technologies.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_UnaiArreguiLeon.pdf
accessibile in internet per tutti a partire dal 06/03/2026
Descrizione: PhD_Thesis_UnaiArreguiLeon
Dimensione
30.34 MB
Formato
Adobe PDF
|
30.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236634