In the context of nuclear fusion research, the European Roadmap for Fusion Electricity has envisioned the realization of an experimental machine for studies about the power and particle exhaust problem, under plasma conditions that are relevant to future power plants. Such machine will be a Divertor Tokamak Test (DTT) located at the ENEA research center in Frascati, Italy. In order to achieve the required plasma performance, DTT will host one of the most powerful Electron Cyclotron Heating (ECH) systems in the world — with a total installed power of 32 MW — and by far the most power-dense. ECH produces localized power deposition in the plasma by means of focused, high-power microwave beams. Each of the 32 beams handled by the DTT ECH plant will deposit approximately 1 MW of heat in a plasma region of just a few cm in diameter, to fulfill various critical tasks, from bulk heating to magneto-hydrodynamic stabilization. The deposition spot can be moved in real time by means of sub-systems called launchers, which include steerable mirrors and the associated actuation mechanisms. The conceptual design phase of the DTT ECH system is currently approaching its finalization. In this context, the design of an innovative steering launcher has been carried out. While the high power density of the ECH system requires a compact launcher design, wide steering ranges and high positioning accuracy must be ensured to effectively fulfill the different tasks of the plant. In order to attain this challenging mix of characteristics, the radical design choice of an in-vessel actuation system was made, enabling considerable reduction in mechanism weight and volume compared to traditional ex-vessel systems. Among the available actuation principles, ultra-high-vacuum-compatible piezoelectric walking drives were selected. In addition to ensuring high compactness and low response times, these actuators enhance steering precision due to their micrometric stepping capability. The main drawback of walking drives is the adherence-limited driving force. This becomes particularly critical when considering the electromagnetic (EM) loads acting on the steering mirror both during normal operation and in case of disruption events. In this regard, different EM loads mitigation strategies are considered, including the innovative solution of an actively cooled, Tungsten-coated dielectric substrate for the steering mirror. Flexible elements constitute the third building block of the system. Compliant mechanisms avoid the problems of vacuum-enhanced friction, backlash and wear, while flexible pipes prevent water leakages that would result in plasma contamination and shutdown. In particular, an innovative Remote Center of Motion flexure pivot is proposed as mirror support, to cope with the stringent size limitations of the launcher assembly. In order to offset the elastic resistance introduced by flexible components and avoid any negative influence of flexures on dynamic performance, a static balancing device based on negative equivalent stiffness elements has been developed, and different strategies for integration in the assembly have been proposed. The adoption of these design solutions results in a compact, lightweight, accurate and robust steering mechanism, which constitutes a promising perspective for the feasibility of a power-dense ECH plant in DTT. After reviewing the literature, this manuscript collects and integrates detailed descriptions of the analytical, numerical and experimental design activities associated with each system component. Finally, it provides perspective about the relevance of the adopted solutions for other present and future fusion machines.
Nel contesto della ricerca sulla fusione nucleare, la European Roadmap for Fusion Electricity ha previsto la realizzazione di una macchina sperimentale per lo studio del problema dell'estrazione della potenza e delle particelle, in condizioni di plasma rilevanti per le future centrali a fusione. Tale macchina sarà il Divertor Tokamak Test (DTT), situato presso il centro di ricerca ENEA di Frascati (RM). Per ottenere le prestazioni di plasma richieste, DTT ospiterà uno dei più potenti sistemi di Electron Cyclotron Heating (ECH) al mondo — con una potenza totale installata di 32 MW — e, di gran lunga, quello con la più elevata densità di potenza. Il metodo ECH consiste nel depositare energia in modo localizzato nel plasma tramite fasci focalizzati di microonde ad alta potenza. Ciascuno dei 32 fasci gestiti dall’impianto ECH di DTT depositerà circa 1 MW di potenza in una regione del plasma con un diametro di pochi centimetri, per svolgere diverse funzioni critiche, dal riscaldamento del plasma alla stabilizzazione magneto-idrodinamica. Il punto di deposizione può essere spostato in tempo reale grazie a sottosistemi chiamati lanciatori, che comprendono specchi orientabili e i relativi meccanismi di attuazione. La fase di progettazione concettuale del sistema ECH di DTT si sta attualmente avviando alla conclusione. In questo contesto, è stata sviluppata la progettazione di un lanciatore innovativo. Sebbene l’alta densità di potenza del sistema ECH richieda un lanciatore compatto, è necessario garantire ampi intervalli di rotazione e un’elevata precisione di posizionamento per svolgere efficacemente le diverse funzioni dell’impianto. Per ottenere questa combinazione di caratteristiche particolarmente ambiziosa, è stata adottata la scelta radicale di un sistema di attuazione interno alla camera da vuoto, consentendo una notevole riduzione di peso e volume del meccanismo rispetto ai tradizionali sistemi ad attuazione esterna. Tra i principi di attuazione disponibili, sono stati selezionati walking drive piezoelettrici compatibili con ultra-alto vuoto. Oltre a garantire un’elevata compattezza e tempi di risposta ridotti, questi attuatori migliorano la precisione di posizionamento grazie alla loro capacità di movimento a passi micrometrici. Il principale svantaggio dei walking drive è la forza di azionamento limitata dall’aderenza. Questo aspetto diventa particolarmente critico considerando i carichi elettromagnetici (EM) che agiscono sullo specchio orientabile sia durante il normale funzionamento sia in caso di eventi di disruzione. A tale riguardo, sono state considerate diverse strategie per mitigare i carichi EM, tra cui la soluzione innovativa di uno specchio con substrato dielettrico rivestito in tungsteno e raffreddato attivamente. Gli elementi flessibili costituiscono il terzo pilastro del sistema. Meccanismi deformabili evitano i problemi legati all’amplificazione dell'attrito nel vuoto, ai giochi e all’usura, mentre tubi flessibili impediscono perdite d’acqua che potrebbero contaminare il plasma causandone lo spegnimento. In particolare, per il supporto dello specchio è stato proposto un innovativo giunto flessibile a centro di rotazione remoto, per rispettare le stringenti limitazioni di spazio. Per compensare la resistenza elastica introdotta dai componenti flessibili ed evitare qualsiasi effetto negativo degli stessi sulle prestazioni dinamiche, è stato sviluppato un dispositivo di bilanciamento statico basato su elementi a rigidezza equivalente negativa, e sono state proposte diverse strategie per la sua integrazione nell’assieme. L’adozione di queste soluzioni progettuali restituisce un meccanismo compatto, leggero, preciso e robusto, che rappresenta una prospettiva promettente per la realizzazione di un impianto ECH ad alta densità di potenza in DTT. Dopo un esame della letteratura, questo manoscritto raccoglie ed integra descrizioni dettagliate delle attività analitiche, numeriche e sperimentali associate alla progettazione di ciascun componente del sistema. Infine, fornisce una prospettiva sulla rilevanza delle soluzioni adottate per altre macchine a fusione presenti e future.
A compact steering launcher for the Electron Cyclotron Heating system of DTT
Busi, Daniele
2024/2025
Abstract
In the context of nuclear fusion research, the European Roadmap for Fusion Electricity has envisioned the realization of an experimental machine for studies about the power and particle exhaust problem, under plasma conditions that are relevant to future power plants. Such machine will be a Divertor Tokamak Test (DTT) located at the ENEA research center in Frascati, Italy. In order to achieve the required plasma performance, DTT will host one of the most powerful Electron Cyclotron Heating (ECH) systems in the world — with a total installed power of 32 MW — and by far the most power-dense. ECH produces localized power deposition in the plasma by means of focused, high-power microwave beams. Each of the 32 beams handled by the DTT ECH plant will deposit approximately 1 MW of heat in a plasma region of just a few cm in diameter, to fulfill various critical tasks, from bulk heating to magneto-hydrodynamic stabilization. The deposition spot can be moved in real time by means of sub-systems called launchers, which include steerable mirrors and the associated actuation mechanisms. The conceptual design phase of the DTT ECH system is currently approaching its finalization. In this context, the design of an innovative steering launcher has been carried out. While the high power density of the ECH system requires a compact launcher design, wide steering ranges and high positioning accuracy must be ensured to effectively fulfill the different tasks of the plant. In order to attain this challenging mix of characteristics, the radical design choice of an in-vessel actuation system was made, enabling considerable reduction in mechanism weight and volume compared to traditional ex-vessel systems. Among the available actuation principles, ultra-high-vacuum-compatible piezoelectric walking drives were selected. In addition to ensuring high compactness and low response times, these actuators enhance steering precision due to their micrometric stepping capability. The main drawback of walking drives is the adherence-limited driving force. This becomes particularly critical when considering the electromagnetic (EM) loads acting on the steering mirror both during normal operation and in case of disruption events. In this regard, different EM loads mitigation strategies are considered, including the innovative solution of an actively cooled, Tungsten-coated dielectric substrate for the steering mirror. Flexible elements constitute the third building block of the system. Compliant mechanisms avoid the problems of vacuum-enhanced friction, backlash and wear, while flexible pipes prevent water leakages that would result in plasma contamination and shutdown. In particular, an innovative Remote Center of Motion flexure pivot is proposed as mirror support, to cope with the stringent size limitations of the launcher assembly. In order to offset the elastic resistance introduced by flexible components and avoid any negative influence of flexures on dynamic performance, a static balancing device based on negative equivalent stiffness elements has been developed, and different strategies for integration in the assembly have been proposed. The adoption of these design solutions results in a compact, lightweight, accurate and robust steering mechanism, which constitutes a promising perspective for the feasibility of a power-dense ECH plant in DTT. After reviewing the literature, this manuscript collects and integrates detailed descriptions of the analytical, numerical and experimental design activities associated with each system component. Finally, it provides perspective about the relevance of the adopted solutions for other present and future fusion machines.File | Dimensione | Formato | |
---|---|---|---|
Busi_2025.pdf
non accessibile
Descrizione: Manoscritto
Dimensione
39.67 MB
Formato
Adobe PDF
|
39.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236713