This research develops an adaptive multi-layered textile system for retrofitting energy-inefficient building façades, addressing thermal comfort and energy consumption challenges, particularly in Mediterranean climates. Textiles are valued in architecture for their lightweight, flexible, and adaptable qualities, but materials like PVC-coated polyester, commonly used for waterproofing, present environmental issues such as poor breathability, condensation, and high environmental impact. This study proposes multi-layered textiles as a sustainable alternative to PVC membranes, ensuring seamless layer connectivity, adaptability, reversibility, and compliance with design-for-disassembly principles, thus enhancing performance and recyclability. The proposed Solar Reflectance Adaptive (SRA) system dynamically responds to environmental conditions by absorbing solar energy during winter and reflecting it in summer, effectively reducing heating and cooling loads. This adaptive approach offers a significant advancement over traditional static insulation methods, which fail to adjust to changing environmental conditions. The system is designed at both the system and fiber levels, with each layer optimized for specific functions. The design methodology integrates a climate-based approach, combining global geometry optimization for system configuration with local geometry design for tailored textile patterns. Data-driven techniques guide material selection and pattern development, ensuring optimal solar reflectance, absorption, and transmittance. The system's structural performance is validated to withstand external loads, such as wind, ensuring durability in real-world applications. Knitted textiles and fiber-reinforced thermoplastic meshes, as subsets of multi-layered systems, provide excellent opportunities for customization and sustainability. Computational knitting techniques enable precise control over global and local geometries, transitioning seamlessly from macro-scale structures to micro-level configurations. This integration of computational design and experimental validation addresses critical architectural challenges, including energy efficiency, dynamic adaptability, and material optimization. By presenting a replicable framework for designing sustainable textile systems, this research highlights the potential of multi-layered textiles to redefine architectural membranes, offering lightweight, efficient, and environmentally responsible solutions for building applications. Simulation results demonstrate the system's efficacy: in winter, the system reduces heating loads by 21\%, heat loss by 72\%, and peak HVAC loads by 22\%. In summer, it achieves a 53\% reduction in cooling loads. These findings highlight the potential of adaptive textiles to transform energy-inefficient façades into climate-responsive, sustainable building systems. The paper also explores the interaction between global and local geometries, supported by a computational workflow and validated through digital fabrication techniques. Two lab-scale prototypes of the multi-layered textiles were fabricated, demonstrating the feasibility and scalability of the proposed adaptive system for sustainable retrofitting applications. This work offers a promising solution for improving energy efficiency in existing buildings and contributes to the growing field of adaptive, textile-based architectural systems.
Questa ricerca sviluppa un sistema adattivo multi-strato in tessuti per il miglioramento delle facciate di edifici inefficienti dal punto di vista energetico, affrontando le sfide del comfort termico e del consumo energetico, in particolare nei climi mediterranei. I tessuti sono apprezzati in architettura per le loro qualità leggere, flessibili e adattabili, ma materiali come il poliestere rivestito in PVC, comunemente utilizzati per l’impermeabilizzazione, presentano problematiche ambientali come bassa traspirabilità, condensa e impatto ambientale elevato. Questo studio propone i tessuti multi-strato come alternativa sostenibile ai membrane in PVC, garantendo la connettività senza soluzione di continuità tra gli strati, l’adattabilità, la reversibilità e la conformità ai principi di design per il disassemblaggio, migliorando così le prestazioni e la riciclabilità. Il sistema proposto, Solar Reflectance Adaptive (SRA), risponde dinamicamente alle condizioni ambientali, assorbendo energia solare durante l'inverno e riflettendola durante l'estate, riducendo così i carichi di riscaldamento e raffreddamento. Questo approccio adattivo offre un significativo progresso rispetto ai metodi di isolamento statici tradizionali, che non si adattano alle condizioni ambientali mutevoli. Il sistema è progettato a livello di sistema e di fibra, con ogni strato ottimizzato per specifiche funzioni. La metodologia progettuale integra un approccio basato sul clima, combinando l'ottimizzazione della geometria globale per la configurazione del sistema con il design della geometria locale per modelli di tessuto su misura. Le tecniche basate sui dati guidano la selezione dei materiali e lo sviluppo dei modelli, garantendo una riflettanza solare ottimale, l'assorbimento e la trasmissione. Le prestazioni strutturali del sistema sono convalidate per resistere a carichi esterni, come il vento, garantendo la durabilità nelle applicazioni reali. I tessuti lavorati a maglia e le maglie in fibra rinforzata con termoplastico, come sottoinsiemi dei sistemi multi-strato, offrono eccellenti opportunità di personalizzazione e sostenibilità. Le tecniche di lavorazione a maglia computazionale consentono un controllo preciso sulla geometria globale e locale, passando senza soluzione di continuità dalle strutture su scala macro alle configurazioni a livello micro. Questa integrazione del design computazionale e della validazione sperimentale affronta le sfide architettoniche critiche, inclusi l'efficienza energetica, l'adattabilità dinamica e l'ottimizzazione dei materiali. Presentando un framework replicabile per la progettazione di sistemi tessili sostenibili, questa ricerca evidenzia il potenziale dei tessuti multi-strato per ridefinire le membrane architettoniche, offrendo soluzioni leggere, efficienti e responsabili dal punto di vista ambientale per le applicazioni edilizie. I risultati delle simulazioni dimostrano l'efficacia del sistema: in inverno, il sistema riduce i carichi di riscaldamento del 21\%, la perdita di calore del 72\% e i carichi di picco HVAC del 22\%. In estate, raggiunge una riduzione del 53\% nei carichi di raffreddamento. Questi risultati evidenziano il potenziale dei tessuti adattivi nel trasformare le facciate inefficienti dal punto di vista energetico in sistemi edilizi responsivi al clima e sostenibili. Il lavoro esplora anche l'interazione tra geometrie globali e locali, supportata da un flusso di lavoro computazionale e validata attraverso tecniche di fabbricazione digitale. Due prototipi su scala di laboratorio dei tessuti multi-strato sono stati fabbricati, dimostrando la fattibilità e la scalabilità del sistema adattivo proposto per applicazioni di retrofitting sostenibile. Questo lavoro offre una soluzione promettente per migliorare l'efficienza energetica negli edifici esistenti e contribuisce al crescente campo dei sistemi architettonici adattivi basati su tessuti.
ReflectTex: development of adaptive multi-layered textile system for energy-efficient retrofitting: a performance-driven approach to solar reflectance adaptation
Ahmadnia, Amirhossein
2024/2025
Abstract
This research develops an adaptive multi-layered textile system for retrofitting energy-inefficient building façades, addressing thermal comfort and energy consumption challenges, particularly in Mediterranean climates. Textiles are valued in architecture for their lightweight, flexible, and adaptable qualities, but materials like PVC-coated polyester, commonly used for waterproofing, present environmental issues such as poor breathability, condensation, and high environmental impact. This study proposes multi-layered textiles as a sustainable alternative to PVC membranes, ensuring seamless layer connectivity, adaptability, reversibility, and compliance with design-for-disassembly principles, thus enhancing performance and recyclability. The proposed Solar Reflectance Adaptive (SRA) system dynamically responds to environmental conditions by absorbing solar energy during winter and reflecting it in summer, effectively reducing heating and cooling loads. This adaptive approach offers a significant advancement over traditional static insulation methods, which fail to adjust to changing environmental conditions. The system is designed at both the system and fiber levels, with each layer optimized for specific functions. The design methodology integrates a climate-based approach, combining global geometry optimization for system configuration with local geometry design for tailored textile patterns. Data-driven techniques guide material selection and pattern development, ensuring optimal solar reflectance, absorption, and transmittance. The system's structural performance is validated to withstand external loads, such as wind, ensuring durability in real-world applications. Knitted textiles and fiber-reinforced thermoplastic meshes, as subsets of multi-layered systems, provide excellent opportunities for customization and sustainability. Computational knitting techniques enable precise control over global and local geometries, transitioning seamlessly from macro-scale structures to micro-level configurations. This integration of computational design and experimental validation addresses critical architectural challenges, including energy efficiency, dynamic adaptability, and material optimization. By presenting a replicable framework for designing sustainable textile systems, this research highlights the potential of multi-layered textiles to redefine architectural membranes, offering lightweight, efficient, and environmentally responsible solutions for building applications. Simulation results demonstrate the system's efficacy: in winter, the system reduces heating loads by 21\%, heat loss by 72\%, and peak HVAC loads by 22\%. In summer, it achieves a 53\% reduction in cooling loads. These findings highlight the potential of adaptive textiles to transform energy-inefficient façades into climate-responsive, sustainable building systems. The paper also explores the interaction between global and local geometries, supported by a computational workflow and validated through digital fabrication techniques. Two lab-scale prototypes of the multi-layered textiles were fabricated, demonstrating the feasibility and scalability of the proposed adaptive system for sustainable retrofitting applications. This work offers a promising solution for improving energy efficiency in existing buildings and contributes to the growing field of adaptive, textile-based architectural systems.File | Dimensione | Formato | |
---|---|---|---|
Amirhossein_Ahmadnia.pdf
accessibile in internet per tutti a partire dal 16/03/2026
Descrizione: PhD Thesis - ReflecTex - Amirhossein Ahmadnia
Dimensione
154.69 MB
Formato
Adobe PDF
|
154.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236952