Understanding plant biology requires a multiscale approach, integrating microscopic and macroscopic perspectives to unravel the complex mechanisms underlying plant growth and adaptation. At the microscopic level, the fundamental mechanisms underlying plant growth dynamics can be investigated, while at the macroscopic level, analysing whole-plant responses to environmental stimuli provide crucial insights into plant adaptive strategies. Investigating these processes requires advanced imaging techniques capable of capturing dynamic biological events with high spatial and temporal resolution. This work investigates both scales using calcium (Ca2+) imaging techniques. At the microscopic level, light sheet fluorescence microscopy (LSFM) was employed to study Ca2+ dynamics in growing root hairs of Arabidopsis thaliana wild-type (non-mutant) and mutant plants. This approach allowed the investigation of how genetic mutations impact Ca2+ dynamics during root hair development. To facilitate data analysis, a dedicated open-access software for image registration was developed. At the macroscopic level, a novel dual-view imaging platform was designed and implemented to overcome the limitations of conventional fluorescence imaging systems, which typically offer a restricted field of view (FOV). This setup enables simultaneous imaging of both root and shoot systems, allowing comprehensive analysis of whole-plant responses to environmental stimuli. Using this platform, long-distance Ca²⁺ signaling was investigated in adult Arabidopsis thaliana and Nicotiana benthamiana plants in response to external stimuli such as press wounding, leaf burning, and flooding. Finally, as a first step toward real-world applications, the imaging system was adapted for greenhouse use to monitor the development of root apparatus of tomato plants throughout their growth cycle. These findings contribute to the development of non-invasive imaging techniques for plant research, with potential applications in sustainable agriculture.
La comprensione della biologia vegetale richiede un approccio multiscala, che integri prospettive microscopiche e macroscopiche per svelare i complessi meccanismi alla base della crescita e dell'adattamento delle piante. A livello microscopico, è possibile indagare i meccanismi fondamentali che regolano le dinamiche di crescita delle piante, mentre a livello macroscopico, l'analisi delle risposte dell'intera pianta agli stimoli ambientali fornisce informazioni cruciali sulle strategie adattative delle piante. Lo studio di questi processi richiede tecniche di imaging avanzate, capaci di catturare eventi biologici dinamici con elevata risoluzione spaziale e temporale. Questo lavoro esplora entrambe le scale utilizzando tecniche di imaging degli ioni calcio (Ca2+). A livello microscopico, è stata impiegata la microscopia a foglio di luce (LSFM) per studiare la dinamica del Ca2+ nei peli radicali in crescita di piante di Arabidopsis thaliana di controllo (non geneticamente mutate) e mutanti. Questo approccio ha permesso di analizzare come le mutazioni genetiche influenzino la dinamica del Ca2+ durante lo sviluppo dei peli radicali. Per facilitare l'analisi dei dati, è stato sviluppato un software open-access dedicato alla registrazione delle immagini. A livello macroscopico, è stata progettata e realizzata una nuova piattaforma di imaging a doppia vista per superare le limitazioni dei sistemi di imaging a fluorescenza convenzionali, che offrono tipicamente un campo visivo (FOV) ristretto. Questo setup consente l'imaging simultaneo sia dell'apparato radicale che della parte aerea della pianta, permettendo un'analisi completa delle risposte dell'intera pianta agli stimoli ambientali. Utilizzando questa piattaforma, è stato studiato il fenomeno del Ca2+ signaling a lunga distanza in piante adulte di Arabidopsis thaliana e Nicotiana benthamiana in risposta a stimoli esterni come pressione meccanica, bruciatura della foglia e sommersione. Infine, come primo passo verso applicazioni nel mondo reale, il sistema di imaging è stato adattato per l'uso in serra, al fine di monitorare lo sviluppo dell’apparato radicale di piante di pomodoro durante l'intero ciclo di crescita. Questi risultati contribuiscono allo sviluppo di tecniche di imaging non invasive per la ricerca sulle piante, con potenziali applicazioni per l’agricoltura sostenibile.
Multiscale optical imaging in plant biology from molecular to macroscopic structures
TORTORA, GIORGIA
2024/2025
Abstract
Understanding plant biology requires a multiscale approach, integrating microscopic and macroscopic perspectives to unravel the complex mechanisms underlying plant growth and adaptation. At the microscopic level, the fundamental mechanisms underlying plant growth dynamics can be investigated, while at the macroscopic level, analysing whole-plant responses to environmental stimuli provide crucial insights into plant adaptive strategies. Investigating these processes requires advanced imaging techniques capable of capturing dynamic biological events with high spatial and temporal resolution. This work investigates both scales using calcium (Ca2+) imaging techniques. At the microscopic level, light sheet fluorescence microscopy (LSFM) was employed to study Ca2+ dynamics in growing root hairs of Arabidopsis thaliana wild-type (non-mutant) and mutant plants. This approach allowed the investigation of how genetic mutations impact Ca2+ dynamics during root hair development. To facilitate data analysis, a dedicated open-access software for image registration was developed. At the macroscopic level, a novel dual-view imaging platform was designed and implemented to overcome the limitations of conventional fluorescence imaging systems, which typically offer a restricted field of view (FOV). This setup enables simultaneous imaging of both root and shoot systems, allowing comprehensive analysis of whole-plant responses to environmental stimuli. Using this platform, long-distance Ca²⁺ signaling was investigated in adult Arabidopsis thaliana and Nicotiana benthamiana plants in response to external stimuli such as press wounding, leaf burning, and flooding. Finally, as a first step toward real-world applications, the imaging system was adapted for greenhouse use to monitor the development of root apparatus of tomato plants throughout their growth cycle. These findings contribute to the development of non-invasive imaging techniques for plant research, with potential applications in sustainable agriculture.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Tortora_2.pdf
accessibile in internet per tutti a partire dal 21/03/2026
Dimensione
3.54 MB
Formato
Adobe PDF
|
3.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237092