The increasing demand for higher capacity in future wireless communication networks drives the exploration of new frequency spectrums, including Frequency Range 2 (FR2) and Frequency Range 3 (FR3). For FR2, the primary challenge is high path loss, which often necessitates network densification. However, densification introduces problems such as increased cost and high aggregated interference. Paradigms like Integrated Access and-Backhauling (IAB), Cell-free massive MIMO (CF-MIMO) architectures, and Smart Radio Environments (SREs) have been proposed to address these issues. This thesis focuses specifically on SREs as a promising solution. For cellular networks, the thesis develops a comprehensive physical propagation model to evaluate SRE-enabling devices such as Reconfigurable Intelligent Surfaces (RISs) and Network-Controlled Repeaters (NCRs), under realistic urban scenarios. This analysis reveals that RIS provides superior flexibility in wide-open areas due to its reconfigurability, while NCR is more effective in corridor-like environments where its amplification compensates for higher path loss. These insights are extended to an optimal planning framework for Heterogeneous SRE (HSRE), balancing cost and coverage through strategic device placement and configuration. This study highlights that optimal planning can significantly reduce network deployment costs while maintaining high coverage performance, showcasing the practicality of HSRE in dense urban scenarios. In the vehicular domain, the thesis proposes fully passive Conformal Intelligent Reflective Surface (CIRS) to mitigate signal blockage in Vehicle-to-Vehicle (V2V) communication. In the first approach, CIRS are designed to mimic flat surfaces, achieving mirror-like age probability by up to 70% compared to bare surfaces, significantly outperforming the specular CIRS approach and enhancing vehicular communication reliability. Interference analysis is another cornerstone of this work. The thesis introduces a scalable and adaptable Stochastic Geometry (SG)-based framework to analyze aggregated interference using the characteristic function of interference. This framework is easily adaptable for various network architectures, such as classical Coordinated MultiPoint (CoMP), CF-MIMO networks, and potentially SREs in future work. This thesis also applies interference analysis in the context of satellite and cellular coexistence in the Upper 6GHz (U6G) band. The analysis considers both direct and reflected interference paths toward geostationary satellites, proving that aggregated interference levels, under typical International Mobile Telecommunications (IMT) parameters, remain safely below the Interference-to-Noise Ratio (INR) protection thresholds set for geostationary satellites, even in dense terrestrial deployment scenarios. By bridging theoretical advancements and practical deployment strategies, this thesis provides a cohesive framework to tackle coverage challenges and interference issues, offering robust, scalable, and cost-effective solutions for 5G and beyond reflections to improve signal reliability. This design reduces blockage probability by approximately 20% compared to the case where reflections (metasurfaces) are not used, effectively mitigating signal blockage. Building on this, the second approach introduces advanced optimally designed CIRSs to maximize both coverage and Spectral Efficiency (SE) by leveraging traffic patterns and vehicular dynamics. This design reduces block
La crescente domanda di maggiore capacità nelle future reti di comunicazione wireless spinge l’esplorazione di nuovi spettri di frequenza, tra cui FR2 e FR3. Per FR2, la sfida principale è l’elevata perdita di percorso, che spesso richiede una densificazione della rete. Tuttavia, la densificazione introduce problemi come costi aumentati e interferenza aggregata elevata. Paradigmi come IAB, architetture CF-MIMO e SREs sono stati proposti per affrontare queste problematiche. Questa tesi si concentra specificamente sugli SREs come soluzione promettente. Per le reti cellulari, la tesi sviluppa un modello di propagazione fisica completo per valutare i dispositivi abilitanti degli SREs, come RISs e NCRs, in scenari urbani realistici. Questa analisi rivela che i RISs offrono una flessibilità superiore in aree aperte grazie alla loro riconfigurabilità, mentre i NCRs risultano più efficaci in ambienti corridoio, dove l’amplificazione compensa l’elevata perdita di percorso. Questi risultati sono estesi a un quadro di pianificazione ottimale per HSRE, bilanciando costi e copertura attraverso il posizionamento e la configurazione strategica dei dispositivi. Questo studio evidenzia che la pianificazione ottimale può ridurre significativamente i costi di distribuzione della rete mantenendo alte prestazioni di copertura, dimostrando la praticità degli HSRE in scenari urbani densi. Nel dominio veicolare, la tesi propone CIRSs completamente passivi per mitigare il blocco del segnale nella comunicazione V2V. Nel primo approccio, i CIRSs sono progettati per imitare superfici piatte, ottenendo riflessioni simili a specchi per migliorare l’affidabilità del segnale. Questo design riduce la probabilità di blocco di circa il 20% rispetto al caso in cui non vengano utilizzate riflessioni (metasuperfici), mitigando efficacemente il blocco del segnale. Basandosi su ciò, il secondo approccio introduce CIRSs avanzati e progettati in modo ottimale per massimizzare sia la copertura che l’efficienza spettrale (SE) sfruttando i modelli di traffico e le dinamiche veicolari. Questo design riduce la probabilità di blocco fino al 70% rispetto alle superfici nude, superando significativamente l’approccio speculare basato sui CIRSs e migliorando l’affidabilità della comunicazione veicolare. L’analisi delle interferenze è un altro pilastro di questo lavoro. La tesi introduce un quadro scalabile e adattabile basato su SG per analizzare l’interferenza aggregata utilizzando la funzione caratteristica dell’interferenza. Questo quadro è facilmente adattabile a varie architetture di rete, come il CoMP classico, le reti CF-MIMO e potenzialmente gli SREs in lavori futuri. Questa tesi applica inoltre l’analisi delle interferenze nel contesto della coesistenza tra satellite e cellulare nella banda U6G. L’analisi considera sia i percorsi di interferenza diretti che riflessi verso i satelliti geostazionari, dimostrando che i livelli di interferenza aggregata, secondo i parametri tipici IMT, rimangono ben al di sotto delle soglie di protezione del rapporto INR stabilite per i satelliti geostazionari, anche in scenari di distribuzione terrestre densa. Collegando progressi teorici e strategie pratiche di distribuzione, questa tesi fornisce un quadro coeso per affrontare le sfide della copertura e delle interferenze, offrendo soluzioni robuste, scalabili e convenienti per il 5G e oltre
6G networks: a coverage enhancement study
AGHAZADEH AYOUBI, REZA
2024/2025
Abstract
The increasing demand for higher capacity in future wireless communication networks drives the exploration of new frequency spectrums, including Frequency Range 2 (FR2) and Frequency Range 3 (FR3). For FR2, the primary challenge is high path loss, which often necessitates network densification. However, densification introduces problems such as increased cost and high aggregated interference. Paradigms like Integrated Access and-Backhauling (IAB), Cell-free massive MIMO (CF-MIMO) architectures, and Smart Radio Environments (SREs) have been proposed to address these issues. This thesis focuses specifically on SREs as a promising solution. For cellular networks, the thesis develops a comprehensive physical propagation model to evaluate SRE-enabling devices such as Reconfigurable Intelligent Surfaces (RISs) and Network-Controlled Repeaters (NCRs), under realistic urban scenarios. This analysis reveals that RIS provides superior flexibility in wide-open areas due to its reconfigurability, while NCR is more effective in corridor-like environments where its amplification compensates for higher path loss. These insights are extended to an optimal planning framework for Heterogeneous SRE (HSRE), balancing cost and coverage through strategic device placement and configuration. This study highlights that optimal planning can significantly reduce network deployment costs while maintaining high coverage performance, showcasing the practicality of HSRE in dense urban scenarios. In the vehicular domain, the thesis proposes fully passive Conformal Intelligent Reflective Surface (CIRS) to mitigate signal blockage in Vehicle-to-Vehicle (V2V) communication. In the first approach, CIRS are designed to mimic flat surfaces, achieving mirror-like age probability by up to 70% compared to bare surfaces, significantly outperforming the specular CIRS approach and enhancing vehicular communication reliability. Interference analysis is another cornerstone of this work. The thesis introduces a scalable and adaptable Stochastic Geometry (SG)-based framework to analyze aggregated interference using the characteristic function of interference. This framework is easily adaptable for various network architectures, such as classical Coordinated MultiPoint (CoMP), CF-MIMO networks, and potentially SREs in future work. This thesis also applies interference analysis in the context of satellite and cellular coexistence in the Upper 6GHz (U6G) band. The analysis considers both direct and reflected interference paths toward geostationary satellites, proving that aggregated interference levels, under typical International Mobile Telecommunications (IMT) parameters, remain safely below the Interference-to-Noise Ratio (INR) protection thresholds set for geostationary satellites, even in dense terrestrial deployment scenarios. By bridging theoretical advancements and practical deployment strategies, this thesis provides a cohesive framework to tackle coverage challenges and interference issues, offering robust, scalable, and cost-effective solutions for 5G and beyond reflections to improve signal reliability. This design reduces blockage probability by approximately 20% compared to the case where reflections (metasurfaces) are not used, effectively mitigating signal blockage. Building on this, the second approach introduces advanced optimally designed CIRSs to maximize both coverage and Spectral Efficiency (SE) by leveraging traffic patterns and vehicular dynamics. This design reduces blockFile | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Final_Reza_Aghazadeh.pdf
accessibile in internet per tutti
Descrizione: PhD Thesis of Reza Aghazadeh Ayoubi
Dimensione
20.07 MB
Formato
Adobe PDF
|
20.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237095