Fiber-reinforced cementitious matrix (FRCM) composites have been gaining popularity in recent years as externally-bonded (EB) reinforcement of structural and non-structural members, as they represent an effective alternative to fiber-reinforced polymers (FRP) to strengthen existing concrete and masonry structures. Although failure of FRCM strengthened elements depends on several geometrical and mechanical parameters of the composite and of the substrate, the main parameter influencing the effectiveness of FRCM is the bond behavior of the composite, i.e., the composite stress-transfer mechanism. Among other applications, EB FRCM composites can be applied to reinforced concrete (RC) elements to improve their shear strength. FRCM composites are generally U-wrapped around the cross-section of RC beams and completely wrapped around the cross-section of RC columns. The shear strength contribution provided by the EB FRCM is usually computed following the Mörsch truss analogy, and the analytical models available in the literature compute the stress in the composite based on different hypotheses. In the first part of this work (Part I), the accuracy of analytical models available in the literature to compute the FRCM shear strength contribution is assessed with respect to a database of FRCM shear strengthened RC beams collated from the literature. The assessment allows for identifying the main parameters affecting the FRCM shear strength contribution. Based on these results, an experimental campaign is designed to clarify the effect of some of these parameters. Namely, four-point bending tests are performed at the Politecnico di Milano on five real-scale RC beams shear strengthened with U-wrapped polyparaphenylene (PBO) FRCM composites, to shed light on the effectiveness of the FRCM shear reinforcement. Then, a new analytical model is proposed to compute the actual stress distribution arising in the composite intersecting the main shear crack. This model can account for the bond behavior of the specific FRCM-concrete interface studied and can follow the evolution of the stress-transfer mechanism as the crack opens. The model is first validated on a reference beam, and then applied to the experimental results of the U-wrapped RC beams tested. A final comparison is made with the Italian guidelines CNR-DT 215, showing that considering the bond behavior of the specific interface is fundamental to accurately estimate the shear strength of FRCM composites U-wrapped around RC members. The new analytical model proposed is also extended to the case of fully-wrapped members. In this case, the analytical model is applied to experimental results available in the literature. Finally, for the first time a new design equation based on the composite bond behavior is proposed in this work for the case of fully-wrapped FRCM shear strengthened RC beams. The results obtained in Part I of this work pave the way for the introduction of a design equation for the case of fully-wrapped FRCM in the Italian guidelines CNR-DT 215. In addition to the study of the shear strength of FRCM-strengthened RC beams, the shear strength of FRP-reinforced concrete members is also investigated, as these two problems can be tackled in a similar way. Indeed, debonding of FRCM composites is generally characterized by large values of interface slips at the ultimate limit state, which entails large openings of substrate cracks. Analogously, reinforcement of concrete members with composite bars, which have elastic moduli smaller than that of steel, determines large openings of concrete cracks both at serviceability and ultimate limit states. Thus, the peculiarities associated with the concrete shear strength contribution observed in FRCM shear strengthened-RC beams can be extended to the case of FRP-reinforced concrete beams. The second part of this work (Part II) investigates the shear strength contribution provided by GFRP bars used as internal transverse shear reinforcement of new concrete members. The GFRP reinforcement shear strength contribution is usually computed using the Mörsch truss analogy and its effectiveness depends once again on the bond behavior at the GFRP-concrete interface. To improve the state of knowledge on this topic, four real-scale concrete beams reinforced with traditional steel bars and thermoset and thermoplastic resin GFRP bars are tested at the Politecnico di Milano. Before that, a thorough mechanical characterization of the GFRP bar quasi-static and long-term behavior is performed. This characterization is fundamental since thermoplastic GFRP bars, which can be easily shaped and are hence particularly suitable to realize transverse reinforcement, represent a novelty and quite limited data are available regarding their behavior. The tests performed allow for assessing the effectiveness of thermoset and thermoplastic resin GFRP bars as longitudinal and transverse reinforcement of concrete members. The focus is set on their shear strength contribution by discussing their behavior and comparing the experimental results of beam tests with predictions of existing analytical formulas, providing indication on the accuracy of these formulas and on parameters that need further consideration. This assessment is particularly interesting because analytical models available in the literature provide formulations based on results of thermoset GFRP bars only and are applied to thermoplastic GFRP bars for the first time. The results show that bent GFRP bars provide for a reinforcement shear strength contribution lower than that provided by the same amount of steel reinforcement. Furthermore, the low elastic modulus and different bond conditions entail for a higher opening of the concrete main shear crack, which in turn determines a decrease of the concrete shear strength contribution as the crack widens.
I materiali compositi a matrice cementizia – fiber-reinforced cementitious matrix (FRCM) – hanno acquisito crescente popolarità negli ultimi anni nel campo degli interventi di rinforzo esterno di strutture esistenti sia in calcestruzzo che in muratura. Vengono applicati sulla superficie esterna dell’elemento da rinforzare e sono una valida alternativa ai materiali compositi a matrice organica – fiber-reinforced polymers (FRP) – in quanto permettono la reversibilità dell’intervento e hanno una migliore compatibilità fisico-chimica con il substrato su cui vengono applicati. Nonostante il collasso di un elemento rinforzato con FRCM dipenda dalle proprietà geometriche e meccaniche del substrato e del rinforzo, il principale fattore che influenza l’efficacia del rinforzo è il comportamento di aderenza del composito, ovvero il meccanismo di trasferimento degli sforzi tra composito applicato esternamente e substrato. Tra le varie applicazioni, i materiali FRCM possono essere utilizzati per incrementare la resistenza a taglio di strutture in calcestruzzo armato. I compositi FRCM vengono solitamente applicati come avvolgimento a “U” in elementi di tipo trave e in avvolgimento completo nel caso di elementi con carichi prevalentemente di compressione assiale. Il contributo alla resistenza a taglio fornito dai materiali FRCM si calcola generalmente mediante l’analogia del traliccio di Mörsch. I diversi modelli analitici disponibili in letteratura sono basati sul calcolo delle tensioni che si sviluppano nel composito in corrispondenza della fessura a taglio e utilizzano diverse ipotesi di base. Nella prima parte di questa tesi (Parte I) viene valutata l’accuratezza dei modelli analitici disponibili in letteratura nel calcolare il contributo a taglio fornito dal materiale composito. Il confronto dei modelli analitici viene effettuato attraverso una raccolta di prove sperimentali eseguite su travi in calcestruzzo armato rinforzate a taglio con diversi tipi di FRCM. Sulla base di questi risultati è stata progettata una campagna sperimentale per identificare l’effetto dei diversi parametri studiati sulla resistenza a taglio fornita dal composito. Cinque prove di flessione su quattro punti sono state eseguite presso il Politecnico di Milano su travi in calcestruzzo armato rinforzate ad avvolgimento a “U” con un FRCM contenente una rete in PBO. Successivamente, è stato proposto un nuovo modello analitico per descrivere la distribuzione reale delle tensioni che si sviluppano nel composito in corrispondenza della fessura di taglio. Tale modello tiene conto dello specifico comportamento di aderenza del composito utilizzato ed è in grado di descrivere l’evoluzione del meccanismo di trasferimento degli sforzi tra composito e substrato all’apertura della fessura di taglio. Il modello analitico è prima applicato a una trave di riferimento e poi ai risultati sperimentali ottenuti precedentemente. Il confronto tra il modello analitico e le formule fornite dalle linee guida italiane CNR-DT 215 per la progettazione con materiali FRCM evidenzia che tenere conto del comportamento di aderenza dello specifico materiale è fondamentale per stimare con precisione la resistenza a taglio fornita dai materiali FRCM avvolti a “U” su travi in calcestruzzo armato. Il modello analitico proposto viene poi esteso al caso di avvolgimento completo. Infine, viene proposta per la prima volta un’equazione di progetto per il caso di compositi FRCM in completo avvolgimento, basata sul comportamento di aderenza del materiale studiato. I risultati ottenuti nella Parte I di questa tesi pongono le basi per l’introduzione nelle linee guida italiane CNR-DT 215 di una formulazione per il calcolo della resistenza a taglio data da compositi FRCM ad avvolgimento completo. Oltre all’analisi della resistenza a taglio di travi in calcestruzzo armato rinforzate con FRCM, questa tesi studia la resistenza a taglio di elementi in calcestruzzo rinforzati con barre in FRP. Infatti, i due argomenti possono essere affrontati con un approccio simile. Il distacco dei compositi FRCM è generalmente associato allo stato limite ultimo ad alti valori di scorrimento all’interfaccia tra composito e substrato, il che comporta ampie aperture di fessure nel substrato. Analogamente, il rinforzo di elementi in calcestruzzo con barre in FRP, che presentano un modulo elastico inferiore rispetto all’acciaio, determina significative aperture di fessura nel calcestruzzo sia agli stati limite di esercizio che agli stati limite ultimi. Di conseguenza, le peculiarità associate al contributo del calcestruzzo alla resistenza a taglio osservate nelle travi rinforzate con FRCM possono essere estese al caso delle travi in calcestruzzo armato rinforzate con barre in FRP. La seconda parte di questa tesi (Parte II) studia il comportamento a taglio di travi in calcestruzzo armato rinforzate internamente con barre in GFRP. Il contributo a taglio fornito dall’armatura trasversale in barre in GFRP viene calcolato mediante l’analogia del traliccio di Mörsch. L’efficacia di questo rinforzo dipende ancora una volta dal comportamento di aderenza dell’interfaccia tra barra in GFRP e calcestruzzo circostante. Al fine di ampliare la conoscenza su questa tipologia di elementi strutturali, sono state testate presso il Politecnico di Milano delle travi armate con barre tradizionali in acciaio e con barre in GFRP realizzate con resine termoindurenti e con resine termoplastiche. Il comportamento quasi-statico e a lungo termine delle barre in GFRP è stato preventivamente determinato mediante prove di trazione e di taglio interlaminare. In particolare, è stato fondamentale caratterizzare le barre in GFRP con resina termoplastica in quanto sono state sviluppate solo negli ultimi anni e i dati disponibili in letteratura sul loro comportamento sono ancora limitati. Le prove effettuate hanno dimostrato l’efficacia delle barre in GFRP come armatura longitudinale e trasversale di elementi strutturali in calcestruzzo. L’attenzione è stata poi focalizzata sul comportamento a taglio di queste travi. I risultati ottenuti sperimentalmente sono stati confrontati con le previsioni dei modelli analitici disponibili in letteratura, al fine di valutarne l’accuratezza e di individuare i parametri che influenzano maggiormente la resistenza a taglio delle travi armate con barre in GFRP. Questa analisi è particolarmente interessante perché i modelli analitici si basano su risultati relativi esclusivamente a barre in GFRP con resina termoindurente e vengono applicati per la prima volta a travi rinforzate con barre in GFRP con resina termoplastica. I risultati ottenuti nella Parte II di questa tesi mostrano che le armature trasversali in GFRP forniscono un contributo a taglio inferiore rispetto alla stessa quantità di armatura in acciaio. Inoltre, il minor modulo elastico e il diverso legame di aderenza determinano una maggiore apertura della fessura di taglio nel calcestruzzo che a sua volta comporta una riduzione del contributo dato dal calcestruzzo alla resistenza a taglio totale dell’elemento.
Shear strengthening of concrete structures with organic- and inorganic-matrix composites
Bertolli, Veronica
2024/2025
Abstract
Fiber-reinforced cementitious matrix (FRCM) composites have been gaining popularity in recent years as externally-bonded (EB) reinforcement of structural and non-structural members, as they represent an effective alternative to fiber-reinforced polymers (FRP) to strengthen existing concrete and masonry structures. Although failure of FRCM strengthened elements depends on several geometrical and mechanical parameters of the composite and of the substrate, the main parameter influencing the effectiveness of FRCM is the bond behavior of the composite, i.e., the composite stress-transfer mechanism. Among other applications, EB FRCM composites can be applied to reinforced concrete (RC) elements to improve their shear strength. FRCM composites are generally U-wrapped around the cross-section of RC beams and completely wrapped around the cross-section of RC columns. The shear strength contribution provided by the EB FRCM is usually computed following the Mörsch truss analogy, and the analytical models available in the literature compute the stress in the composite based on different hypotheses. In the first part of this work (Part I), the accuracy of analytical models available in the literature to compute the FRCM shear strength contribution is assessed with respect to a database of FRCM shear strengthened RC beams collated from the literature. The assessment allows for identifying the main parameters affecting the FRCM shear strength contribution. Based on these results, an experimental campaign is designed to clarify the effect of some of these parameters. Namely, four-point bending tests are performed at the Politecnico di Milano on five real-scale RC beams shear strengthened with U-wrapped polyparaphenylene (PBO) FRCM composites, to shed light on the effectiveness of the FRCM shear reinforcement. Then, a new analytical model is proposed to compute the actual stress distribution arising in the composite intersecting the main shear crack. This model can account for the bond behavior of the specific FRCM-concrete interface studied and can follow the evolution of the stress-transfer mechanism as the crack opens. The model is first validated on a reference beam, and then applied to the experimental results of the U-wrapped RC beams tested. A final comparison is made with the Italian guidelines CNR-DT 215, showing that considering the bond behavior of the specific interface is fundamental to accurately estimate the shear strength of FRCM composites U-wrapped around RC members. The new analytical model proposed is also extended to the case of fully-wrapped members. In this case, the analytical model is applied to experimental results available in the literature. Finally, for the first time a new design equation based on the composite bond behavior is proposed in this work for the case of fully-wrapped FRCM shear strengthened RC beams. The results obtained in Part I of this work pave the way for the introduction of a design equation for the case of fully-wrapped FRCM in the Italian guidelines CNR-DT 215. In addition to the study of the shear strength of FRCM-strengthened RC beams, the shear strength of FRP-reinforced concrete members is also investigated, as these two problems can be tackled in a similar way. Indeed, debonding of FRCM composites is generally characterized by large values of interface slips at the ultimate limit state, which entails large openings of substrate cracks. Analogously, reinforcement of concrete members with composite bars, which have elastic moduli smaller than that of steel, determines large openings of concrete cracks both at serviceability and ultimate limit states. Thus, the peculiarities associated with the concrete shear strength contribution observed in FRCM shear strengthened-RC beams can be extended to the case of FRP-reinforced concrete beams. The second part of this work (Part II) investigates the shear strength contribution provided by GFRP bars used as internal transverse shear reinforcement of new concrete members. The GFRP reinforcement shear strength contribution is usually computed using the Mörsch truss analogy and its effectiveness depends once again on the bond behavior at the GFRP-concrete interface. To improve the state of knowledge on this topic, four real-scale concrete beams reinforced with traditional steel bars and thermoset and thermoplastic resin GFRP bars are tested at the Politecnico di Milano. Before that, a thorough mechanical characterization of the GFRP bar quasi-static and long-term behavior is performed. This characterization is fundamental since thermoplastic GFRP bars, which can be easily shaped and are hence particularly suitable to realize transverse reinforcement, represent a novelty and quite limited data are available regarding their behavior. The tests performed allow for assessing the effectiveness of thermoset and thermoplastic resin GFRP bars as longitudinal and transverse reinforcement of concrete members. The focus is set on their shear strength contribution by discussing their behavior and comparing the experimental results of beam tests with predictions of existing analytical formulas, providing indication on the accuracy of these formulas and on parameters that need further consideration. This assessment is particularly interesting because analytical models available in the literature provide formulations based on results of thermoset GFRP bars only and are applied to thermoplastic GFRP bars for the first time. The results show that bent GFRP bars provide for a reinforcement shear strength contribution lower than that provided by the same amount of steel reinforcement. Furthermore, the low elastic modulus and different bond conditions entail for a higher opening of the concrete main shear crack, which in turn determines a decrease of the concrete shear strength contribution as the crack widens.File | Dimensione | Formato | |
---|---|---|---|
20250324_thesis_submitted.pdf
non accessibile
Dimensione
21.87 MB
Formato
Adobe PDF
|
21.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237157