This dissertation bridges the gap between biomaterials and clinical dentistry by demonstrating a new, innovative, and sustainable solution to a widespread clinical problem: the regeneration of periodontal tissue. The research focuses on developing a bioactive scaffold made of hyaluronic acid hydrogel that promotes periodontal tissue regeneration by integrating proline-rich peptides. The study examined two types of hydrogels made with different chemical cross-linkers: BDDE (butanediol diglycidyl ether) and PEGDE (polyethylene glycol diglycidyl ether). These gels were compared to assess their physical and chemical behavior, biocompatibility (how well they interact with the body’s cells), and their effects in living organisms (in vivo response). A key focus of the research was to investigate how the proline-rich peptides P2 and P6 can initiate and guide mineral formation (nucleation capacity). This was studied using molecular dynamics, which simulates the peptides’ behavior at the atomic level, and mineralization tests, which show how the peptides promote mineral growth in practice. The findings show that the peptides can initiate and guide the formation of apatite, a mineral similar to that which forms naturally during bone healing. This process—peptide-guided biomineralization—demonstrates that the biomaterial has an inherent potential to promote bone growth (osteoinduction). The study is deeply rooted in translational research, with a primary goal of optimizing the scaffold for clinical use. The research not only discusses the challenges and methodologies involved in moving from laboratory research to a clinically relevant product, but also provides detailed insights into regulatory pathways and the industrial scaling of biomaterial production, emphasizing its clinical potential. The in vivo studies, conducted using a model of acute gum injuries in pigs, showed that the peptide-enhanced hydrogel significantly outperformed existing treatments. The biomaterial elicited a favorable immune response and promoted tissue regeneration more effectively than current clinical products. These findings were further supported by tissue analysis (histology) and protein analysis, which showed reduced inflammation and better tissue integration, confirming the biomaterial’s potential in clinical settings. The dissertation expands knowledge on how peptide-enhanced hydrogels can be used for periodontal tissue regeneration and paves the way for clinical applications of such biomaterials. The work provides a solid foundation for further clinical studies, potential commercial development, and is a significant contribution to biomaterials science and regenerative medicine.
Questa tesi colma il divario tra i biomateriali e l’odontoiatria clinica, dimostrando una soluzione nuova, innovativa e sostenibile a un diffuso problema clinico: la rigenerazione del tessuto parodontale. La ricerca si concentra sullo sviluppo di un’impalcatura bioattiva a base di idrogel di acido ialuronico che promuove la rigenerazione del tessuto parodontale grazie all’integrazione di peptidi ricchi di prolina. Lo studio ha esaminato due tipi di idrogel realizzati con diversi agenti chimici di reticolazione: BDDE (butandiolo diglicidiletere) e PEGDE (polietilenglicole diglicidiletere). Questi gel sono stati confrontati per valutarne il comportamento fisico e chimico, la biocompatibilità (cioè quanto bene interagiscono con le cellule dell’organismo) e la risposta in organismi viventi (risposta in vivo). Un aspetto centrale della ricerca è stato indagare come i peptidi ricchi di prolina P2 e P6 possano avviare e guidare la formazione minerale (capacità di nucleazione). Questo è stato analizzato tramite dinamiche molecolari, che simulano il comportamento dei peptidi a livello atomico, e test di mineralizzazione, che mostrano come i peptidi favoriscano in pratica la crescita minerale. I risultati mostrano che i peptidi sono in grado di avviare e guidare la formazione di apatite, un minerale simile a quello che si forma naturalmente durante la guarigione ossea. Questo processo – la biomineralizzazione guidata dai peptidi – dimostra che il biomateriale possiede un potenziale intrinseco per promuovere la crescita ossea (osteoinduzione). Lo studio è profondamente radicato nella ricerca traslazionale, con l’obiettivo principale di ottimizzare l’impalcatura per l’uso clinico. La ricerca discute non solo le sfide e le metodologie legate alla transizione dalla ricerca di laboratorio a un prodotto clinicamente rilevante, ma fornisce anche approfondimenti dettagliati sui percorsi normativi e sulla scalabilità industriale della produzione di biomateriali, sottolineandone il potenziale clinico. Gli studi in vivo, condotti utilizzando un modello di lesioni acute gengivali nei suini, hanno dimostrato che l’idrogel potenziato con peptidi ha ottenuto risultati significativamente migliori rispetto ai trattamenti esistenti. Il biomateriale ha suscitato una risposta immunitaria favorevole e ha promosso la rigenerazione tissutale in modo più efficace rispetto ai prodotti clinici attualmente disponibili. Questi risultati sono stati ulteriormente confermati da analisi tissutali (istologia) e analisi proteiche, che hanno mostrato una riduzione dell’infiammazione e una migliore integrazione del tessuto, confermando il potenziale clinico del biomateriale. La tesi amplia la conoscenza su come gli idrogel potenziati con peptidi possano essere utilizzati per la rigenerazione del tessuto parodontale e apre la strada ad applicazioni cliniche di tali biomateriali. Il lavoro fornisce una solida base per futuri studi clinici, potenziali sviluppi commerciali e rappresenta un contributo significativo alla scienza dei biomateriali e alla medicina rigenerativa.
The development of peptide enhanced hyaluronic acid-gels for periodontal regeneration
Øvrebø, Øystein
2024/2025
Abstract
This dissertation bridges the gap between biomaterials and clinical dentistry by demonstrating a new, innovative, and sustainable solution to a widespread clinical problem: the regeneration of periodontal tissue. The research focuses on developing a bioactive scaffold made of hyaluronic acid hydrogel that promotes periodontal tissue regeneration by integrating proline-rich peptides. The study examined two types of hydrogels made with different chemical cross-linkers: BDDE (butanediol diglycidyl ether) and PEGDE (polyethylene glycol diglycidyl ether). These gels were compared to assess their physical and chemical behavior, biocompatibility (how well they interact with the body’s cells), and their effects in living organisms (in vivo response). A key focus of the research was to investigate how the proline-rich peptides P2 and P6 can initiate and guide mineral formation (nucleation capacity). This was studied using molecular dynamics, which simulates the peptides’ behavior at the atomic level, and mineralization tests, which show how the peptides promote mineral growth in practice. The findings show that the peptides can initiate and guide the formation of apatite, a mineral similar to that which forms naturally during bone healing. This process—peptide-guided biomineralization—demonstrates that the biomaterial has an inherent potential to promote bone growth (osteoinduction). The study is deeply rooted in translational research, with a primary goal of optimizing the scaffold for clinical use. The research not only discusses the challenges and methodologies involved in moving from laboratory research to a clinically relevant product, but also provides detailed insights into regulatory pathways and the industrial scaling of biomaterial production, emphasizing its clinical potential. The in vivo studies, conducted using a model of acute gum injuries in pigs, showed that the peptide-enhanced hydrogel significantly outperformed existing treatments. The biomaterial elicited a favorable immune response and promoted tissue regeneration more effectively than current clinical products. These findings were further supported by tissue analysis (histology) and protein analysis, which showed reduced inflammation and better tissue integration, confirming the biomaterial’s potential in clinical settings. The dissertation expands knowledge on how peptide-enhanced hydrogels can be used for periodontal tissue regeneration and paves the way for clinical applications of such biomaterials. The work provides a solid foundation for further clinical studies, potential commercial development, and is a significant contribution to biomaterials science and regenerative medicine.File | Dimensione | Formato | |
---|---|---|---|
2025_03_Øvrebø.pdf
accessibile in internet per tutti
Dimensione
22.06 MB
Formato
Adobe PDF
|
22.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237217