Earth embankments deteriorate due to natural ageing and external actions now intensified by climate change, therefore effective repair methods are urgently needed. Common interventions aimed to restore embankments, such as the reconstruction of the damaged area or the injection of low-pressure grouts to fill fractures and burrows, may cause the weakening of the structure due to discontinuities between natural and treated zones. Moreover, since such repair techniques require huge volumes of materials, more sustainable materials are encouraged. At the same time, the textile and fashion industries are looking for sustainable waste management and disposal strategies to face environmental problems concerned with the voluminous textile waste dispatched to landfills or incinerators. The use of soil mixed with textile waste in embankment improvement has been investigated with the twofold purpose to identify an effective engineering practice and to provide a strategy for the circular economy of textiles. To conduct the research, an experimental approach was initially adopted, followed by an exploration of simple, yet functional, failure modelling to describe the behaviour of treated soils. Laboratory tests have been conducted on soil specimens collected from the Secchia River embankment, Northern Italy, to define the appropriate mixture proportions and to compare physical properties and hydromechanical behaviour of natural soil and soil treated with linen and viscose fibres. The results indicate that with appropriate fibre content, manageable and homogeneous mixtures can be achieved, making this solution suitable for practical applications; however, ensuring applicability at the site scale requires the use of appropriately sized equipment. The presence of the selected textile fibres significantly impacts the hydro-mechanical behaviour of the soil by modifying its density, compressibility, strength, hydraulic conductivity, retention capability, and volumetric behaviour (i.e., shrinkage and swelling). The effect of fibres depends on their geometry, properties, and the sample preparation procedure, thus varying with different fibre configurations. In general, the presence of fibres reduces the maximum dry density achievable through compaction. However, the density of laboratory samples is also influenced by the sample preparation technique and the procedure adopted for saturation, which leads to contrasting effects on sample compressibility. Samples reinforced with fibres of specific geometry (i.e., length and diameter) and optimal fibre contents exhibit an increased shear strength. The influence of fibres on hydraulic conductivity and water retention is primarily governed by their effect on the pore network and their hydrophilic nature. Moreover, the presence of fibres reduces soil swelling during saturation and shrinkage during drying, making them suitable for limiting crack formation in earth embankments due to drying-wetting cycles. The obtained results highlight the importance of considering the relative size between fibres and soil particles and the scale effect for specific applications. As the results demonstrate that the geotechnical properties of the treated soil can be engineered to meet specific site requirements, the proposed approach seems a promising solution for earth works and ground improvement, such as embankment repair and restoration.
Gli argini fluviali sono soggetti a degrado dovuto all’invecchiamento naturale e all’azione di fattori esterni, aggravati dai cambiamenti climatici, che rendono necessari interventi di riparazione più efficaci e tempestivi. Le tecniche tradizionali di intervento, come la ricostruzione delle aree danneggiate o l’iniezione di malte a bassa pressione per riempire fratture e cavità, possono indebolire la struttura a causa delle discontinuità tra le zone trattate e quelle naturali. Inoltre, poiché questi interventi richiedono grandi quantità di materiali, è sempre più urgente adottare materiali sostenibili. Parallelamente, l’industria tessile e della moda è alla ricerca di metodi di gestione e smaltimento dei rifiuti che siano rispettosi dell’ambiente, per far fronte al problema dell’accumulo di scarti tessili destinati alle discariche o all’incenerimento. Questa ricerca esplora l’utilizzo di terre miscelate con fibre tessili di scarto per migliorare gli argini, proponendo quindi non solo un’innovativa pratica ingegneristica, ma anche una strategia nell’ambito dell’economia circolare. Lo studio si è basato su un approccio sperimentale, affiancato da una modellazione semplice ma funzionale all’applicazione pratica, volta a descrivere il comportamento dei terreni trattati. I test di laboratorio, condotti su campioni prelevati dall’argine del fiume Secchia, nel Nord Italia, hanno permesso di definire le proporzioni ottimali della miscela e di confrontare le proprietà fisiche e il comportamento idro-meccanico del terreno naturale e di quello trattato con fibre di lino e viscosa. I risultati mostrano che, con un contenuto adeguato di fibre, è possibile ottenere miscele omogenee e facilmente gestibili, idonee all’applicazione pratica, anche se per garantire l’efficacia su larga scala è necessario l’impiego di attrezzature proporzionate. L’inclusione di fibre tessili modifica in maniera significativa le proprietà del terreno, influendo su densità, comprimibilità, resistenza, conducibilità idraulica e comportamento volumetrico (ritiro e rigonfiamento). Questi effetti variano in funzione della geometria delle fibre, delle loro proprietà e del processo di preparazione dei campioni. In generale, la presenza di fibre riduce la massima densità secca raggiungibile tramite compattazione, ma la densità dei campioni di laboratorio è influenzata anche dalla tecnica di preparazione e dalla procedura per la saturazione, producendo effetti contrastanti sulla comprimibilità. Per campioni rinforzati con fibre di una particolare geometria (lunghezza e diametro) e con un contenuto ottimo si è ottenuto un incremento della resistenza. L’influenza delle fibre sulla conducibilità idraulica e sulla ritenzione idrica è principalmente governata dal loro effetto sulla struttura porosa e dalla loro natura idrofila. Inoltre, la presenza di fibre riduce il rigonfiamento del terreno durante la saturazione e il loro ritiro in fase di essiccamento, risultando efficace nel limitare la formazione di fessure negli argini soggetti a cicli di imbibizione-essiccamento. I risultati ottenuti evidenziano l’importanza di considerare la dimensione relativa tra fibre e particelle di terreno, nonché gli effetti di scala in specifiche applicazioni. Poiché le proprietà geotecniche del terreno trattato possono essere ottimizzate per rispondere alle specifiche esigenze di ciascun sito, questo approccio rappresenta una soluzione promettente per le opere in terra e il miglioramento del terreno, come la riparazione e il ripristino degli argini.
On the use of textile waste fibres for sustainable solutions in earth embankments repair
ROSSIGNOLI, CHIARA
2024/2025
Abstract
Earth embankments deteriorate due to natural ageing and external actions now intensified by climate change, therefore effective repair methods are urgently needed. Common interventions aimed to restore embankments, such as the reconstruction of the damaged area or the injection of low-pressure grouts to fill fractures and burrows, may cause the weakening of the structure due to discontinuities between natural and treated zones. Moreover, since such repair techniques require huge volumes of materials, more sustainable materials are encouraged. At the same time, the textile and fashion industries are looking for sustainable waste management and disposal strategies to face environmental problems concerned with the voluminous textile waste dispatched to landfills or incinerators. The use of soil mixed with textile waste in embankment improvement has been investigated with the twofold purpose to identify an effective engineering practice and to provide a strategy for the circular economy of textiles. To conduct the research, an experimental approach was initially adopted, followed by an exploration of simple, yet functional, failure modelling to describe the behaviour of treated soils. Laboratory tests have been conducted on soil specimens collected from the Secchia River embankment, Northern Italy, to define the appropriate mixture proportions and to compare physical properties and hydromechanical behaviour of natural soil and soil treated with linen and viscose fibres. The results indicate that with appropriate fibre content, manageable and homogeneous mixtures can be achieved, making this solution suitable for practical applications; however, ensuring applicability at the site scale requires the use of appropriately sized equipment. The presence of the selected textile fibres significantly impacts the hydro-mechanical behaviour of the soil by modifying its density, compressibility, strength, hydraulic conductivity, retention capability, and volumetric behaviour (i.e., shrinkage and swelling). The effect of fibres depends on their geometry, properties, and the sample preparation procedure, thus varying with different fibre configurations. In general, the presence of fibres reduces the maximum dry density achievable through compaction. However, the density of laboratory samples is also influenced by the sample preparation technique and the procedure adopted for saturation, which leads to contrasting effects on sample compressibility. Samples reinforced with fibres of specific geometry (i.e., length and diameter) and optimal fibre contents exhibit an increased shear strength. The influence of fibres on hydraulic conductivity and water retention is primarily governed by their effect on the pore network and their hydrophilic nature. Moreover, the presence of fibres reduces soil swelling during saturation and shrinkage during drying, making them suitable for limiting crack formation in earth embankments due to drying-wetting cycles. The obtained results highlight the importance of considering the relative size between fibres and soil particles and the scale effect for specific applications. As the results demonstrate that the geotechnical properties of the treated soil can be engineered to meet specific site requirements, the proposed approach seems a promising solution for earth works and ground improvement, such as embankment repair and restoration.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Rossignoli_PhD.pdf
non accessibile
Descrizione: Rossignoli, PhD thesis
Dimensione
8.74 MB
Formato
Adobe PDF
|
8.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237278