The growing decentralization of energy systems and the integration of distributed energy resources have introduced new challenges and opportunities for microgrid management. This thesis addresses these complexities by introducing a comprehensive hierarchical control framework that combines day-ahead dispatch, intra-day control, multi-objective optimization, and data-driven approaches, with a focus on energy storage systems, flexible loads, grid stability, and optimal performance both technically and economically. This approach is based on a multi-objective day-ahead dispatch strategy for microgrids that balances operational costs, including the battery aging cost, and employs both centralized and distributed Alternating Direction Method of Multipliers methods. The strategy optimizes energy dispatch while incorporating battery degradation, offering valuable insights into the long-term economic viability of battery energy storage systems in volatile market conditions. Building on this, an intra-day hierarchical control is proposed incorporating a Scenario-Based MPC approach together with a deterministic MPC for intra-day management, where it effectively manages the uncertainties from non-controllable distributed energy resources improving cost efficiency and power control. In order to design the low-level controllers, data-driven methods were employed to enhance system flexibility and performance. Using the adaptability and effectiveness in improving the behavior of the system with the Set-Membership Data-Driven approach, the methodology developed was extended from Single Input Single Output (SISO) to Multiple Input Multiple Output (MIMO) systems. Furthermore, Data-Driven Control strategies were successfully validated in a real-world application of Battery Energy Storage Systems (BESS). Additionally, flexible loads, specifically thermoelectric refrigerators, were controlled using these strategies to provide frequency containment services. The findings of this thesis emphasize the transformative potential of data-based approaches in enhancing the efficiency, reliability, and flexibility of microgrid operations, contributing significantly to the future of microgrids composed of distributed energy systems.
La crescente decentralizzazione dei sistemi energetici e l’integrazione di risorse energetiche distribuite hanno introdotto nuove sfide e opportunità nella gestione delle microreti. Questa tesi affronta queste complessità presentando un quadro di controllo gerarchico che combina la gestione dell’energia su base giornaliera, il controllo in tempo reale, l’ottimizzazione multi-obiettivo e metodi basati sui dati, con particolare attenzione ai sistemi di accumulo, ai carichi flessibili, alla stabilità della rete e alle prestazioni ottimali sia dal punto di vista tecnico che economico. L’approccio proposto si basa su una strategia di gestione dell’energia giornaliera per le microreti, che, da un lato, equilibra i costi operativi, inclusi quelli legati all’invecchiamento delle batterie, e utilizza sia metodi centralizzati che distribuiti basati sull’Algoritmo Alternating Direction Method of Multipliers. Questa strategia ottimizza la distribuzione dell’energia considerando il degrado delle batterie e fornisce indicazioni utili sulla sostenibilità economica a lungo termine dei sistemi di accumulo in contesti di mercato variabili. A partire da questa base, viene proposto un controllo gerarchico per la gestione in tempo reale, che integra un controllo predittivo basato su scenari (Scenario-Based MPC) insieme a un controllo predittivo deterministico per la gestione intra-giornaliera. Questo approccio permette di gestire in modo efficace le incertezze delle risorse energetiche distribuite non controllabili, migliorando sia l’efficienza dei costi che il controllo della potenza. Per la progettazione dei controlli di basso livello, sono stati utilizzati metodi basati sui dati per aumentare la flessibilità e le prestazioni del sistema. Grazie alla capacità di adattamento e all’efficacia del metodo Set-Membership Data-Driven, la metodologia sviluppata è stata estesa dai sistemi a ingresso e uscita singoli (SISO) a quelli con ingressi e uscite multipli (MIMO). Inoltre, le strategie di controllo basate sui dati sono state testate con successo in un’applicazione reale di sistemi di accumulo a batteria (BESS). Infine, carichi flessibili, come i frigoriferi termoelettrici, sono stati controllati con queste strategie per fornire servizi di regolazione della frequenza. I risultati di questa tesi evidenziano il potenziale innovativo dei metodi basati sui dati per migliorare l’efficienza, l’affidabilità e la flessibilità della gestione delle microreti, contribuendo in modo significativo al futuro dei sistemi energetici distribuiti.
Learning-based optimal management and control for sustainable energy systems with storage capabilities
Cordoba Pacheco, Andres Felipe
2024/2025
Abstract
The growing decentralization of energy systems and the integration of distributed energy resources have introduced new challenges and opportunities for microgrid management. This thesis addresses these complexities by introducing a comprehensive hierarchical control framework that combines day-ahead dispatch, intra-day control, multi-objective optimization, and data-driven approaches, with a focus on energy storage systems, flexible loads, grid stability, and optimal performance both technically and economically. This approach is based on a multi-objective day-ahead dispatch strategy for microgrids that balances operational costs, including the battery aging cost, and employs both centralized and distributed Alternating Direction Method of Multipliers methods. The strategy optimizes energy dispatch while incorporating battery degradation, offering valuable insights into the long-term economic viability of battery energy storage systems in volatile market conditions. Building on this, an intra-day hierarchical control is proposed incorporating a Scenario-Based MPC approach together with a deterministic MPC for intra-day management, where it effectively manages the uncertainties from non-controllable distributed energy resources improving cost efficiency and power control. In order to design the low-level controllers, data-driven methods were employed to enhance system flexibility and performance. Using the adaptability and effectiveness in improving the behavior of the system with the Set-Membership Data-Driven approach, the methodology developed was extended from Single Input Single Output (SISO) to Multiple Input Multiple Output (MIMO) systems. Furthermore, Data-Driven Control strategies were successfully validated in a real-world application of Battery Energy Storage Systems (BESS). Additionally, flexible loads, specifically thermoelectric refrigerators, were controlled using these strategies to provide frequency containment services. The findings of this thesis emphasize the transformative potential of data-based approaches in enhancing the efficiency, reliability, and flexibility of microgrid operations, contributing significantly to the future of microgrids composed of distributed energy systems.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_2025_VF.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Learning-Based Optimal Management and Control for Sustainable Energy Systems with Storage Capabilities
Dimensione
30.39 MB
Formato
Adobe PDF
|
30.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237340