The use of molten salts as coolants in energy systems has been explored for their high heat capacity, high working temperatures, low vapor pressure, and stability. Recently, interest has surged in applications such as thermal energy storage and nuclear energy, notably in Generation IV reactor such as the Molten Salt Reactors (MSR). Molten salts coolants are characterized by unique thermal-hydraulic phenomena, such as radiative heat transfer, complex phase changes, and internal heat generation due to nuclear reactions. Accurate modeling of these phenomena is key for the design of passive safety systems that could be used in these reactors for designing nuclear decay heat removal systems based on the natural circulation principle. This PhD thesis contributes to the development of a comprehensive numerical methodology and a tool to simulate and characterize the dynamic behavior of natural circulation systems using molten salts. By considering some of the specific molten salt’s phenomena this methodology could be used for the design of passive safety systems using molten salts. The main effort of this work was focused on thermal-hydraulic descriptions, the stability analysis, and the computational efficiency. The thermal-hydraulic system behavior was modeled by solving the Navier-Stokes equation with a Computational Fluid Dynamics (CFD) tool. The natural convection stability was analyzed using Linear Stability Theory (LST) which allows studying small perturbations around a base solution. To reduce computational costs, Reduced Order Models (ROM) were implemented in the methodology. A method based on Proper Orthogonal Decomposition (POD) was thus used to complemented CFD simulations, while Dynamic Mode Decomposition (DMD) techniques were used to reduce the costs of performing a stability analysis. These techniques implemented in a numerical tool based on a coupling between codes OpenFOAM, MATLAB, and Python. Comparisons between the numerical tool predictions and available numerical benchmarks show an excellent agreement on the natural circulation flow fields and the stability behavior. A study case based on the Rayleigh-Bénard (RB) configuration was then proposed for further analyses. This RB configuration can be approximated as a 2D incompressible laminar flow which simplifies the numerical analyses. The stability analysis methodology was then applied to this study case with and without an internal heat source in the fluid. This allowed investigating the impact of the heat generation on the flow stability. The second part of the thesis was devoted to the design of a natural circulation experiment to study the performance of the methodology. The experiment was based on a geometry close to the study case: a 3D rectangular flat-cavity with similar to RB convection cells, that allowed to decrease turbulence, to mimic an internal heat source and to obtain a 2D-like flow behavior. Water-glycerol mixtures and Particle Image Velocimetry (PIV) to measure the flow velocity were employed in the experiments. The first campaign showed important discrepancies with the model’s predictions leading to improvements in both the experiment and the models. With these modifications, the second campaign resulted in better agreement. In conclusion of this work, the developed numerical tool significantly improves the original CFD-based methodology for studying natural circulation. Some of the improvements include the use of better numerical models, the enhancement of previous algorithms, the inclusion of specific molten salt’s phenomena, and the initial performance evaluations. A natural circulation experiment was also constructed and provided essential data for evaluating the numerical method. The data collected from the experiment showed reasonable agreement with the numerical results and demonstrated complex flow dynamic behavior. Future work should focus on incorporating 3D effects and turbulence, as well as improving the experimental modeling.
L’uso dei sali fusi come fluidi refrigeranti nei sistemi energetici è stato esplorato per via della loro elevata capacità termica, alte temperature operative, bassa pressione di vapore e stabilità. Recentemente, l’interesse è aumentato in applicazioni come l’accumulo di energia termica e l’energia nucleare, in particolare nei reattori di IV Generazione come i Reattori a Sali Fusi (MSR). I refrigeranti a sali fusi sono caratterizzati da fenomeni termo-fluidodinamici unici, come il trasferimento di calore radiativo, complesse transizioni di fase e generazione di calore interno dovuta a reazioni nucleari. Una modellazione accurata di questi fenomeni è fondamentale per la progettazione di sistemi di sicurezza passivi che possano essere impiegati in questi reattori per la rimozione del calore di decadimento nucleare secondo il principio della circolazione naturale. Questa tesi di dottorato contribuisce allo sviluppo di una metodologia numerica completa e di uno strumento per simulare e caratterizzare il comportamento dinamico dei sistemi a circolazione naturale che utilizzano sali fusi. Considerando alcuni dei fenomeni specifici dei sali fusi, questa metodologia può essere utilizzata per la progettazione di sistemi di sicurezza passivi basati su tali fluidi. Il lavoro si è concentrato principalmente sulla descrizione termo-fluidodinamica, sull’analisi della stabilità e sull’efficienza computazionale. Il comportamento del sistema termo-fluidodinamico è stato modellato risolvendo le equazioni di Navier-Stokes con uno strumento di Fluidodinamica Computazionale (CFD). La stabilità della convezione naturale è stata analizzata mediante la Teoria della Stabilità Lineare (LST), che consente di studiare piccole perturbazioni attorno a una soluzione di base. Per ridurre i costi computazionali, sono stati implementati Modelli a Ordine Ridotto (ROM) nella metodologia. È stato quindi utilizzato un metodo basato sulla Decomposizione Ortogonale Propria (POD) per integrare le simulazioni CFD, mentre le tecniche di Decomposizione in Modi Dinamici (DMD) sono state impiegate per ridurre i costi dell’analisi di stabilità. Queste tecniche sono state implementate in uno strumento numerico basato sull’accoppiamento tra i codici OpenFOAM, MATLAB e Python. I confronti tra le previsioni dello strumento numerico e i benchmark numerici disponibili mostrano un’eccellente corrispondenza sui campi di flusso in regime di circolazione naturale e sul comportamento di stabilità. È stato quindi proposto un caso di studio basato sulla configurazione di Rayleigh-Bénard (RB) per ulteriori analisi. Questa configurazione RB può essere approssimata come un flusso laminare bidimensionale incomprimibile, semplificando così le analisi numeriche. La metodologia di analisi della stabilità è stata poi applicata a questo caso di studio con e senza sorgente di calore interna nel fluido, consentendo di investigare l’impatto della generazione di calore sulla stabilità del flusso. La seconda parte della tesi è stata dedicata alla progettazione di un esperimento di circolazione naturale per studiare le prestazioni della metodologia. L’esperimento si basa su una geometria simile al caso di studio: una cavità rettangolare piatta tridimensionale, con celle convettive simili a quelle di Rayleigh-Bénard, che ha permesso di ridurre la turbolenza, simulare una sorgente di calore interna e ottenere un comportamento del flusso vicino a quello bidimensionale. Per le prove sperimentali sono state utilizzate miscele di acqua-glicerolo e la velocimetria a immagine di particelle (PIV) per misurare la velocità del flusso. La prima campagna sperimentale ha evidenziato importanti discrepanze rispetto alle previsioni del modello, portando a miglioramenti sia dell’apparato sperimentale sia dei modelli. Con tali modifiche, la seconda campagna ha mostrato una migliore corrispondenza. In conclusione, lo strumento numerico sviluppato migliora significativamente la metodologia originaria basata su CFD per lo studio della circolazione naturale. Tra i miglioramenti apportati rientrano l’uso di modelli numerici più accurati, il perfezionamento di algoritmi precedenti, l’inclusione di fenomeni specifici dei sali fusi e una prima valutazione delle prestazioni. È stato inoltre realizzato un esperimento di circolazione naturale che ha fornito dati essenziali per la valutazione del metodo numerico. I dati raccolti hanno mostrato una buona corrispondenza con i risultati numerici e hanno evidenziato un complesso comportamento dinamico del flusso. I lavori futuri dovrebbero concentrarsi sull’inclusione degli effetti tridimensionali e della turbolenza, oltre che sul miglioramento della modellazione sperimentale.
Numerical and experimental study of the dynamic behavior of natural circulation systems using molten salts for heat removal
NARVAEZ ARRUA, JONAS SEBASTIAN
2024/2025
Abstract
The use of molten salts as coolants in energy systems has been explored for their high heat capacity, high working temperatures, low vapor pressure, and stability. Recently, interest has surged in applications such as thermal energy storage and nuclear energy, notably in Generation IV reactor such as the Molten Salt Reactors (MSR). Molten salts coolants are characterized by unique thermal-hydraulic phenomena, such as radiative heat transfer, complex phase changes, and internal heat generation due to nuclear reactions. Accurate modeling of these phenomena is key for the design of passive safety systems that could be used in these reactors for designing nuclear decay heat removal systems based on the natural circulation principle. This PhD thesis contributes to the development of a comprehensive numerical methodology and a tool to simulate and characterize the dynamic behavior of natural circulation systems using molten salts. By considering some of the specific molten salt’s phenomena this methodology could be used for the design of passive safety systems using molten salts. The main effort of this work was focused on thermal-hydraulic descriptions, the stability analysis, and the computational efficiency. The thermal-hydraulic system behavior was modeled by solving the Navier-Stokes equation with a Computational Fluid Dynamics (CFD) tool. The natural convection stability was analyzed using Linear Stability Theory (LST) which allows studying small perturbations around a base solution. To reduce computational costs, Reduced Order Models (ROM) were implemented in the methodology. A method based on Proper Orthogonal Decomposition (POD) was thus used to complemented CFD simulations, while Dynamic Mode Decomposition (DMD) techniques were used to reduce the costs of performing a stability analysis. These techniques implemented in a numerical tool based on a coupling between codes OpenFOAM, MATLAB, and Python. Comparisons between the numerical tool predictions and available numerical benchmarks show an excellent agreement on the natural circulation flow fields and the stability behavior. A study case based on the Rayleigh-Bénard (RB) configuration was then proposed for further analyses. This RB configuration can be approximated as a 2D incompressible laminar flow which simplifies the numerical analyses. The stability analysis methodology was then applied to this study case with and without an internal heat source in the fluid. This allowed investigating the impact of the heat generation on the flow stability. The second part of the thesis was devoted to the design of a natural circulation experiment to study the performance of the methodology. The experiment was based on a geometry close to the study case: a 3D rectangular flat-cavity with similar to RB convection cells, that allowed to decrease turbulence, to mimic an internal heat source and to obtain a 2D-like flow behavior. Water-glycerol mixtures and Particle Image Velocimetry (PIV) to measure the flow velocity were employed in the experiments. The first campaign showed important discrepancies with the model’s predictions leading to improvements in both the experiment and the models. With these modifications, the second campaign resulted in better agreement. In conclusion of this work, the developed numerical tool significantly improves the original CFD-based methodology for studying natural circulation. Some of the improvements include the use of better numerical models, the enhancement of previous algorithms, the inclusion of specific molten salt’s phenomena, and the initial performance evaluations. A natural circulation experiment was also constructed and provided essential data for evaluating the numerical method. The data collected from the experiment showed reasonable agreement with the numerical results and demonstrated complex flow dynamic behavior. Future work should focus on incorporating 3D effects and turbulence, as well as improving the experimental modeling.File | Dimensione | Formato | |
---|---|---|---|
Thesis Manuscript - Jonas Sebastian NARVAEZ ARRUA.pdf
accessibile in internet per tutti
Dimensione
97.9 MB
Formato
Adobe PDF
|
97.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237341