A rotating detonation combustor (RDC) is an innovative technology with the potential to significantly enhance the efficiency of modern gas turbines, offering benefits for both ground power generation and the aviation industry. However, the highly unsteady and transonic flows generated by RDCs require advanced turbine designs, such as supersonic inlet turbines, to fully realize their benefits. This thesis focuses on the design of an efficient supersonic inlet turbine and the evaluation of its performance under engine-representative flow conditions. To achieve this, the research is structured around three core objectives: the design and optimization of supersonic turbines, the exploration of the fundamental physics governing their behavior, and the development of effective methodologies to integrate these turbines with RDCs. An in-house mean-line code is developed specifically for the design of supersonic inlet turbines for rotating detonation engines (RDEs). While based on standard turbine theory, this code incorporates the key characteristics unique to supersonic blades. Parametric analyses are performed with this tool revealing that the optimal operating conditions for these turbines differ significantly from those of conventional subsonic turbines. Without the benefit of decades of accumulated design experience, targeted optimization procedures are implemented to identify loading conditions and endwall geometries that minimize losses in these unconventional machines. Additionally, a one-dimensional model is developed to design the internal cooling channel system of turbines. This model was employed to propose cooling strategies capable of maintaining the thin blades of supersonic turbines within the material’s safe operating limits. The design of supersonic inlet cascades faces significant challenges due to the inherent limitations of supersonic flows. While several studies have been published on the unstarting of supersonic intakes, there exists a major knowledge gap in the unstarting of supersonic blade rows. Within this thesis, it is discovered on a novel unstarting mechanism for supersonic inlet cascades induced by the formation of a collective shock. Tailored simulations were carried out to study the formation, the stability, and the hysteresis of this phenomenon. Then, a reduced-order model was developed and verified to estimate the limit induced by this additional unstarting mechanism. Furthermore, the well-known Kantrowitz criterion for the self-starting of a supersonic channel was reviewed and adapted to supersonic blade rows by considering both weak and strong oblique shock waves in the calculation of the maximum contract ratio. Considering that highly unsteady flows are delivered by the RDC, the effect of unsteady inlet conditions with variable frequency, amplitude, and mean value on the unstarting phenomena is investigated. Then, a fast and cost-effective tool is developed to predict and study bow shock wave dynamics. To conclude the second part of the thesis, a comprehensive overview of all supersonic inlet turbine design limits is presented, and design guidelines are updated in view of the further restrictions introduced by the unstarting phenomena. The final part of this thesis focuses on integrating the supersonic inlet turbine with the RDC using a transition duct. The duct is designed by proposing a generalized implementation of the method of characteristics (MOC) that enables the generation of annular ducts featuring asymmetric and rotated hub and shroud walls. The MOC model is extended to accommodate both ideal and non-ideal flows. Additionally, reduced-order models are implemented to estimate viscous losses within the duct and determine the maximum incidence angle at the turbine inlet. Finally, this thesis research concludes with the first large eddy simulation of the full supersonic architecture downstream of the combustor operating with RDC-representative inlet conditions. The strengths and limitations of Reynolds-averaged Navier-Stokes (RANS) simulations in capturing the complex flow physics of such systems are revealed. An entropy decomposition framework is then applied to uncover the dominant physical mechanisms of entropy generation and to identify regions of peak entropy production. The impact of RDC wave propagation through the stator and rotor blade rows is analyzed through phase-phase diagrams of phase-locked averaged quantities, revealing key unsteady flow interactions. Additionally, the dominant modes characterizing the flow separation on the stator’s suction side are detected with dynamic mode decomposition and an accurate reduced-order model is developed with the state-of-the-art shallow recurrent decoder neural network. This thesis offers valuable insights into the design, optimization, and cooling of supersonic inlet turbines, as well as the fundamental physics of unstarting phenomena and the detailed aerodynamic performance of these machines in rotating detonation engines. These findings pave the way for the practical implementation of RDE-integrated turbine technologies and support further advancements in this field.
Un combustore a detonazione rotante è una tecnologia innovativa con il potenziale di migliorare significativamente l'efficienza delle moderne turbine a gas, offrendo vantaggi sia per la produzione di energia a terra che per l’industria aeronautica. Tuttavia, i flussi altamente fluttuanti e transonici generati dai combustori a detonazione rotante richiedono turbine dal design avanzato, come quelle con ingresso supersonico, per sfruttarne appieno i benefici. Questa tesi si concentra su una progettazione efficace di una turbina ad ingresso supersonico e sulla valutazione delle sue prestazioni in condizioni di flusso rappresentative di un motore a detonazione rotante. Per raggiungere questo obiettivo, la ricerca si sviluppa attorno a tre tematiche principali: la progettazione e l’ottimizzazione delle turbine supersoniche, l’analisi della fisica fondamentale che ne governa il funzionamento e lo sviluppo di metodologie efficaci per la loro integrazione con i combustori a detonazione rotante. Il punto di partenza del lavoro è stato lo sviluppo di un codice in-house di tipo mean-line per la progettazione di turbine con ingresso supersonico destinate ai motori a detonazione rotante. Pur fondandosi sulla teoria classica delle turbine, questo codice incorpora le caratteristiche peculiari delle palette supersoniche. Attraverso analisi parametriche, si è scoperto che le condizioni operative ottimali di queste turbine differiscono in modo significativo da quelle delle turbine subsoniche convenzionali. In assenza di decenni di esperienza consolidata nella progettazione di tali macchine, sono state implementate procedure di ottimizzazione per identificare le condizioni di carico e la forma delle pareti che minimizza la generazione di perdite. Inoltre, è stato sviluppato un modello monodimensionale per progettare il sistema di raffreddamento interno delle turbine, il quale ha permesso di definire strategie di raffreddamento in grado di mantenere le sottili palette supersoniche entro i limiti di sicurezza del materiale. La progettazione della schiera ad ingresso supersonico presenta sfide significative a causa delle limitazioni intrinseche dei flussi supersonici. Sebbene la letteratura offra numerosi studi sull’avviamento dei diffusori supersonici, vi sono rilevanti lacune di conoscenza sull’avviamento delle turbine supersoniche. In questa tesi, viene individuato un nuovo meccanismo di disavviamento nelle schiere ad ingresso supersonico, generato dalla formazione di un’onda d’urto collettiva. Sono state condotte simulazioni mirate per analizzare la formazione, la stabilità e l’isteresi di questo fenomeno. Successivamente, è stato sviluppato e validato un modello a ordine ridotto per stimare i limiti imposti da questo ulteriore meccanismo di disavviamento. Inoltre, il ben noto criterio di Kantrowitz sviluppato per diffusori supersonici è stato rivisto e adattato alle schiere supersoniche, considerando sia onde d’urto oblique deboli che forti nel calcolo del massimo rapporto di contrazione. Data la natura altamente instabile del flusso generato dai combustori a detonazione rotante, è stato analizzato l’effetto delle condizioni di ingresso non stazionarie sui fenomeni di disavviamento nelle schiere supersoniche. Successivamente, è stato sviluppato uno strumento rapido ed efficiente per prevedere e studiare la dinamica delle onde d’urto generate dalle palette. La seconda parte della tesi si conclude con una panoramica completa dei limiti progettuali delle turbine con ingresso supersonico e con un aggiornamento delle linee guida di progettazione, tenendo conto delle ulteriori restrizioni imposte dai fenomeni di disavvimanto supersonico. L’ultima parte della tesi è dedicata all’integrazione della turbina supersonica con il combustore a detonazione rotante tramite un condotto di transizione. Il design del condotto è stato sviluppato mediante un’implementazione generalizzata del metodo delle caratteristiche, che consente di generare condotti anulari con pareti asimmetriche e ruotate. Il metodo alle caratteristiche è stato esteso per tenere conto sia dei flussi ideali che di quelli non ideali. Inoltre, sono stati implementati modelli a ordine ridotto per stimare le perdite viscose all'interno del condotto e determinare l'angolo massimo di incidenza all’ingresso della turbina. Questo progetto di tesi si conclude con una simulazione ad alta fedeltà (LES) dell’intera architettura supersonica a valle del combustore, operante con condizioni di ingresso rappresentative di un combustore a detonazione rotante. Sono stati messi in luce i punti di forza e i limiti delle simulazioni RANS nella loro capacità di catturare a pieno le complessità dei flussi supersonici che si sviluppano in questi sistemi. È stato quindi applicato un framework di decomposizione dell'entropia per identificare i principali meccanismi fisici responsabili della generazione di entropia e localizzare le regioni di massima produzione entropica. L'impatto della propagazione delle onde di detonazione attraverso la schiera statorica e rotorica è stato analizzato attraverso diagrammi di fase, rivelando le principali interazioni del flusso non stazionario. Inoltre, le modalità dominanti alla base della separazione del flusso sul dorso dello statore sono state individuate tramite tecniche di decomposizione dei campi di moto (DMD), e un modello a ordine ridotto accurato è stato sviluppato utilizzando una rete neurale di ultima generazione (SHRED). Questa tesi offre contributi significativi alla progettazione, ottimizzazione e raffreddamento delle turbine ad ingresso supersonico, fornendo al contempo un’analisi approfondita della fisica alla base dei fenomeni di disavviamento supersonico e informazioni dettagliate sulle prestazioni aerodinamiche di queste macchine nei motori a detonazione rotante. I risultati ottenuti aprono la strada all’implementazione pratica delle turbine supersoniche all’interno dei motori a detonazione rotante e favoriscono ulteriori progressi nel settore.
Supersonic inlet turbines for rotating detonation engines
Mushtaq, Noraiz
2024/2025
Abstract
A rotating detonation combustor (RDC) is an innovative technology with the potential to significantly enhance the efficiency of modern gas turbines, offering benefits for both ground power generation and the aviation industry. However, the highly unsteady and transonic flows generated by RDCs require advanced turbine designs, such as supersonic inlet turbines, to fully realize their benefits. This thesis focuses on the design of an efficient supersonic inlet turbine and the evaluation of its performance under engine-representative flow conditions. To achieve this, the research is structured around three core objectives: the design and optimization of supersonic turbines, the exploration of the fundamental physics governing their behavior, and the development of effective methodologies to integrate these turbines with RDCs. An in-house mean-line code is developed specifically for the design of supersonic inlet turbines for rotating detonation engines (RDEs). While based on standard turbine theory, this code incorporates the key characteristics unique to supersonic blades. Parametric analyses are performed with this tool revealing that the optimal operating conditions for these turbines differ significantly from those of conventional subsonic turbines. Without the benefit of decades of accumulated design experience, targeted optimization procedures are implemented to identify loading conditions and endwall geometries that minimize losses in these unconventional machines. Additionally, a one-dimensional model is developed to design the internal cooling channel system of turbines. This model was employed to propose cooling strategies capable of maintaining the thin blades of supersonic turbines within the material’s safe operating limits. The design of supersonic inlet cascades faces significant challenges due to the inherent limitations of supersonic flows. While several studies have been published on the unstarting of supersonic intakes, there exists a major knowledge gap in the unstarting of supersonic blade rows. Within this thesis, it is discovered on a novel unstarting mechanism for supersonic inlet cascades induced by the formation of a collective shock. Tailored simulations were carried out to study the formation, the stability, and the hysteresis of this phenomenon. Then, a reduced-order model was developed and verified to estimate the limit induced by this additional unstarting mechanism. Furthermore, the well-known Kantrowitz criterion for the self-starting of a supersonic channel was reviewed and adapted to supersonic blade rows by considering both weak and strong oblique shock waves in the calculation of the maximum contract ratio. Considering that highly unsteady flows are delivered by the RDC, the effect of unsteady inlet conditions with variable frequency, amplitude, and mean value on the unstarting phenomena is investigated. Then, a fast and cost-effective tool is developed to predict and study bow shock wave dynamics. To conclude the second part of the thesis, a comprehensive overview of all supersonic inlet turbine design limits is presented, and design guidelines are updated in view of the further restrictions introduced by the unstarting phenomena. The final part of this thesis focuses on integrating the supersonic inlet turbine with the RDC using a transition duct. The duct is designed by proposing a generalized implementation of the method of characteristics (MOC) that enables the generation of annular ducts featuring asymmetric and rotated hub and shroud walls. The MOC model is extended to accommodate both ideal and non-ideal flows. Additionally, reduced-order models are implemented to estimate viscous losses within the duct and determine the maximum incidence angle at the turbine inlet. Finally, this thesis research concludes with the first large eddy simulation of the full supersonic architecture downstream of the combustor operating with RDC-representative inlet conditions. The strengths and limitations of Reynolds-averaged Navier-Stokes (RANS) simulations in capturing the complex flow physics of such systems are revealed. An entropy decomposition framework is then applied to uncover the dominant physical mechanisms of entropy generation and to identify regions of peak entropy production. The impact of RDC wave propagation through the stator and rotor blade rows is analyzed through phase-phase diagrams of phase-locked averaged quantities, revealing key unsteady flow interactions. Additionally, the dominant modes characterizing the flow separation on the stator’s suction side are detected with dynamic mode decomposition and an accurate reduced-order model is developed with the state-of-the-art shallow recurrent decoder neural network. This thesis offers valuable insights into the design, optimization, and cooling of supersonic inlet turbines, as well as the fundamental physics of unstarting phenomena and the detailed aerodynamic performance of these machines in rotating detonation engines. These findings pave the way for the practical implementation of RDE-integrated turbine technologies and support further advancements in this field.File | Dimensione | Formato | |
---|---|---|---|
mushtaq_thesis_revisedFinal.pdf
accessibile in internet per tutti
Descrizione: mushtaq_phdThesis
Dimensione
102.78 MB
Formato
Adobe PDF
|
102.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237397