The rise of biocatalysis aligns with the increasing demand of chemical industries for processes that promote both economic and environmental sustainability. Biocatalytic methods harness natural catalysts, such as enzymes and microorganisms to catalyse chemical reactions, overcoming many limitations of conventional synthesis, such as the reliance on toxic heavy metals, harsh reaction conditions, and complex purification steps. Furthermore, biocatalysts operate under mild conditions, offering exceptional stereo- and regioselectivity, reducing the need for protecting groups and additional purification stages. These natural catalysts can be combined in various cascade configurations, enhancing catalytic efficiency, unveiling new reaction pathways and simplifying both upstream and downstream processes. The integration of biocatalysis, biomass utilization, and green chemistry marks a transformative era for the chemical industry, significantly reducing its environmental impact while maintaining economic competitiveness. This thesis presents the development of novel chemo-enzymatic cascade processes for the synthesis of fine chemicals, ultimately providing a potential alternative to more traditional synthetic methods while aligning with the principles of green chemistry. In particular, the catalytic properties of various biocatalysts (microorganisms or isolated enzymes) were harnessed in different chemo-enzymatic designs to access a diverse range of fine chemical products, including pharmaceutical ingredients and flavour compounds. Promising molecules for basic research, including non-canonical amino acids (ncAAs), employed in a number of research areas, notably in biological studies, in drug design and for the modification and tailoring of peptides and proteins, were produced exploiting the catalytic properties of phenylalanine ammonia lyases and tryptophan synthases. Furthermore, other industrially relevant molecules, such as active pharmaceutical ingredients, including olvanil, probes for chemical biology, including galactolipids probes, were synthesised by means of amine transaminases and galactose oxidases enzyme. In collaboration with a flavour and fragrance company, novel chemo-enzymatic strategies for the synthesis of food flavour compounds were developed. In particular, a fully biobased approach for the production of pyrazines was successfully established exploiting the activity of threonine dehydrogenases. Biocatalysis exemplifies how nature-inspired solutions can revolutionize traditional industries, providing a blueprint for sustainable economic growth. The advancements presented in this thesis contribute to the growing field of sustainable chemistry, highlighting the potential of biocatalytic strategies to drive innovation in pharmaceutical and fine chemical production.
Lo sviluppo della biocatalisi si allinea con la crescente richiesta da parte dell’industria chimica, di processi che promuovano sia la sostenibilità economica che quella ambientale. I metodi biocatalitici sfruttano catalizzatori naturali, come enzimi e microrganismi, per catalizzare reazioni chimiche, superando molte delle limitazioni della sintesi organica convenzionale, tra cui l’utilizzo di metalli pesanti e nocivi per l’ambiente, intense condizioni di reazione e complessi passaggi di purificazione. I biocatalizzatori operano a bassa temperatura, pressione atmosferica e generalmente in solventi acquosi offrendo un’eccellente stereo- e regioselettività, riducendo così la necessità di gruppi protettivi e di ulteriori fasi di purificazione. Tali catalizzatori possono inoltre essere combinati in diverse configurazioni a cascata, aumentandone l’efficienza catalitica, aprendo nuove possibilità di sintesi e semplificando i processi di recupero del prodotto finale (processi di downstream). L’integrazione della biocatalisi e di una chimica più sostenibile segna un’era di trasformazione per l’industria chimica, volta a ridurre significativamente l’impatto ambientale delle sue operazioni pur mantenendo la sua competitività economica. Questa tesi presenta lo sviluppo di nuovi processi in cascata chemo-enzimatici per la sintesi di prodotti per la chimica fine, offrendo una potenziale alternativa ai metodi sintetici tradizionali e in linea con i principi della chimica verde. In particolare, le proprietà catalitiche di diversi biocatalizzatori (microrganismi o enzimi isolati) sono state sfruttate in diversi processi chemo-enzimatici per ottenere una vasta gamma di prodotti chimici di interesse, inclusi intermedi per la sintesi di farmaci, molecole di interesse per la ricerca di base e ancora aromi e fragranze per l’industria alimentare. Gli amminoacidi non canonici (ncAAs) sono molecole impiegate in numerosi ambiti di ricerca, in particolare negli studi biologici, nella progettazione di farmaci e nella modificazione di peptidi e proteine. Tali molecole sono state ottenute sfruttando le proprietà catalitiche di enzimi quali la fenilalanina ammonia liasi e la triptofano sintasi. L’enzima galattosio ossidasi è stato utilizzato per la sintesi di sonde lipidiche, molecole studiate per il loro potenziale diagnostico. Altri composti di rilievo industriale, come alcuni principi attivi farmaceutici, tra cui l’olvanil, sono stati sintetizzati mediante l’uso delle transaminasi sfruttando matrici di scarto come materie di partenza in ottica di un’economia completamente circolare. In collaborazione con un’azienda del settore aromi e fragranze, sono state sviluppate nuove strategie chemo-enzimatiche per la sintesi di composti aromatici per l’industria alimentare. In particolare, è stato sviluppato con successo un approccio completamente bio-based per la produzione di pirazine, sfruttando l’attività della treonina deidrogenasi. La biocatalisi rappresenta dunque un chiaro esempio di come soluzioni ispirate alla natura possano rivoluzionare l’industria tradizionale. I risultati presentati in questa tesi evidenziano il potenziale delle strategie biocatalitiche nel promuovere nuove e efficienti soluzioni volte allo sviluppo di una chimica più sostenibile.
Cascade biocatalysis for the green and sustainable synthesis of fine chemicals
Nobbio, Celeste
2024/2025
Abstract
The rise of biocatalysis aligns with the increasing demand of chemical industries for processes that promote both economic and environmental sustainability. Biocatalytic methods harness natural catalysts, such as enzymes and microorganisms to catalyse chemical reactions, overcoming many limitations of conventional synthesis, such as the reliance on toxic heavy metals, harsh reaction conditions, and complex purification steps. Furthermore, biocatalysts operate under mild conditions, offering exceptional stereo- and regioselectivity, reducing the need for protecting groups and additional purification stages. These natural catalysts can be combined in various cascade configurations, enhancing catalytic efficiency, unveiling new reaction pathways and simplifying both upstream and downstream processes. The integration of biocatalysis, biomass utilization, and green chemistry marks a transformative era for the chemical industry, significantly reducing its environmental impact while maintaining economic competitiveness. This thesis presents the development of novel chemo-enzymatic cascade processes for the synthesis of fine chemicals, ultimately providing a potential alternative to more traditional synthetic methods while aligning with the principles of green chemistry. In particular, the catalytic properties of various biocatalysts (microorganisms or isolated enzymes) were harnessed in different chemo-enzymatic designs to access a diverse range of fine chemical products, including pharmaceutical ingredients and flavour compounds. Promising molecules for basic research, including non-canonical amino acids (ncAAs), employed in a number of research areas, notably in biological studies, in drug design and for the modification and tailoring of peptides and proteins, were produced exploiting the catalytic properties of phenylalanine ammonia lyases and tryptophan synthases. Furthermore, other industrially relevant molecules, such as active pharmaceutical ingredients, including olvanil, probes for chemical biology, including galactolipids probes, were synthesised by means of amine transaminases and galactose oxidases enzyme. In collaboration with a flavour and fragrance company, novel chemo-enzymatic strategies for the synthesis of food flavour compounds were developed. In particular, a fully biobased approach for the production of pyrazines was successfully established exploiting the activity of threonine dehydrogenases. Biocatalysis exemplifies how nature-inspired solutions can revolutionize traditional industries, providing a blueprint for sustainable economic growth. The advancements presented in this thesis contribute to the growing field of sustainable chemistry, highlighting the potential of biocatalytic strategies to drive innovation in pharmaceutical and fine chemical production.File | Dimensione | Formato | |
---|---|---|---|
Celeste Nobbio manuscript FINAL.pdf
solo utenti autorizzati a partire dal 05/04/2026
Descrizione: Tesi Celeste Nobbio FINALE
Dimensione
10.24 MB
Formato
Adobe PDF
|
10.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237437