In this PhD thesis the use of biochar obtained by chestnut waste, primarily, and other lignocellulosic residues was investigated following the principle of circularity and sustainability. Biochar was extensively characterized by several techniques, that allow to deeply investigate its textural, morphological and chemico-physical characteristics. Chestnut wastes have been proven to be an excellent raw material for the development of multi-function biochar. However, the experimental conditions of the thermochemical processes (gasification/pyrolysis) are extremely important for the characteristics of the final material. The biochar obtained by pyrolysis or gasification of the chestnuts residual biomass were produced at the BEELab, University of Modena and Reggio Emilia. Furthermore, commercial biochar, obtained by other residual biomasses, were also investigated to validate and generalize the utilization of biochar. Textural properties, as well as surface charge and surface functional groups make biochar a promising candidate as carrier of bioactive molecules for improved feed in animal nutrition, as sorbent for capture of inorganic and organic pollutants, as well as support for the development of biochar-based photocatalysts for organic pollutant removal. In particular, in feed application, chestnut biochar (CB) and vine pruning biochar (VB) have been tested as carriers of egg white lysozyme (LY) to prevent its degradation during the gastric passage in weaned pigs. Simulating the pH condition of the gastrointestinal environment, a slight increase of lysozyme release was observed, suggesting a potential application of biochar in controlled release and delivery of bioactive molecules within the animal intestinal environment. Moreover, the bioactive extracts from CB and VB show antioxidant and antimicrobial activities that can enhance the well-being of the animals. In wastewater treatment, six different chestnut biochar were studied as sorbents for copper (Cu) and zinc (Zn), chosen as model pollutants in piglets’ slurry. Chestnut biochar obtained via gasification was found to be a better performing sorbent both for copper and zinc, than the biochar obtained by pyrolysis. Apparently, a correlation between the surface area and the adsorption capability is present. Also, the adsorption of Lanthanum (La), Neodymium (Nd) and Yttrium (Y), selected as representative of Rare Earths (REs), was evaluated by using chestnut wastes-based and commercial lignocellulosic biochar. The capture capability depends on both the sorbent and the REs nature, and it is not influenced by the morphology of the sorbent. With the most effective biochar, a commercial one, capture yield in the range 45-69% is reached, depending on the REs. Exploring the potential application of biochar in industrial sector, biochar was successfully incorporated in 3-D structured material, using geopolymer as additives to form a granulated material which has been employed in column-test for the removal of pollutants reaching a copper removal of 70%. Finally, both chestnut biochar and commercial biochar were investigated as potential support for the development of supported catalysts for the removal of Diclofenac through a combined adsorption-photocatalysis approach reaching the almost total removal of Diclofenac in 120 minutes.
Focus di questa tesi di dottorato è lo studio e il riutilizzo di biochar ottenuto da gassificazione/pirolisi di scarti della lavorazione delle castagne e da altri residui lignocellulosici, seguendo i principi dell’economia circolare e della sostenibilità. I biochar ottenuti dalla pirolisi o dalla gassificazione della biomassa residua degli scarti di castagne sono stati prodotti presso il laboratorio BEELab dell'Università di Modena e Reggio Emilia (UNIMORE), mentre i restanti sono di natura commerciale. I diversi biochar sono stati ampiamente studiati con diverse tecniche di caratterizzazione, che hanno permesso di valutarne le caratteristiche morfologiche e chimico-fisiche; in particolare, gli scarti della lavorazione delle castagne si sono dimostrati efficaci per lo sviluppo di biochar multifunzionali. E’ stato evidenziato come le condizioni sperimentali dei processi termochimici (gassificazione/pirolisi) sono risultate estremamente importanti nel determinare le caratteristiche del materiale finale. Le proprietà del biochar, come la carica superficiale e i gruppi funzionali superficiali, lo rendono un candidato promettente come carrier di molecole bioattive da essere somministrate nell'alimentazione animale, come materiale adsorbente per la cattura di inquinanti inorganici e organici, nonché come supporto per lo sviluppo di fotocatalizzatori per la rimozione di inquinanti organici. In particolare, nell'ambito dell'alimentazione animale, il biochar di castagne e il biochar di potatura di vite sono stati testati come carrier di lisozima, utilizzato come modello di molecole bioattive. L’obiettivo era la prevenzione della degradazione del lisozima durante il passaggio gastrointestinale in suinetti svezzati. E’ stato dimostrato che il biochar interagisce mediante interazione tra cariche opposte con il lisozima legandolo piuttosto stabilmente. Simulando le condizioni di pH dell'ambiente gastrointestinale è stato osservato un minore rilascio a pH 3, tipico dello stomaco, rispetto a pH 7, caratteristico dell’intestino dell’animale, confermando una potenziale applicazione del sistema lisozima-biochar per il rilascio controllato nella somministrazione di molecole bioattive nell'ambiente intestinale degli animali. Nell’ambito del trattamento acque, sei diversi biochar di castagne sono stati studiati come potenziali adsorbenti per favorire la cattura di rame (Cu) e zinco (Zn), metalli scelti in quanto presenti nei liquami di allevamento. Il biochar di castagne ottenuto per gassificazione, in virtu’ delle sue proprietà chimico-fisiche, è risultato essere il materiale adsorbente più efficace sia nei confronti del rame che dello zinco, rispetto ai biochar ottenuti tramite pirolisi. Per questa applicazione, il biochar è stato anche formato con successo come materiale strutturato in 3-D, utilizzando geopolimeri, scarti della produzione degli acciai, come additivi per fornire resistenza meccanica. Il materiale granulato così ottenuto è stato impiegato in test in colonna per la rimozione del rame, raggiungendo un’efficienza di cattura del 70%. La capacità adsorbente dei biochar è stata anche stata valutata per l'adsorbimento di lantanio (La), neodimio (Nd) e ittrio (Y), selezionati come rappresentativi delle terre rare (RE). Si è osservato che la capacità di cattura dipende sia dal materiale che dalla natura del metallo, e non sembra essere influenzata dalla morfologia del materiale. Si è raggiunta una massima resa di adsorbimento dell’ordine del 45-69%, a seconda del metallo considerato. Infine, sia il biochar di castagno che il biochar commerciale sono stati studiati come potenziale supporto per lo sviluppo di fotocatalizzatori supportati a base di ferro per la rimozione di Diclofenac, scelto come modello di inquinanti organici. I materiali sono stati preparati ed estensivamente caratterizzati. Attraverso un approccio combinato di adsorbimento e fotocatalisi, è stato possibile ottenere la rimozione quasi totale di Diclofenac in 120 minuti di reazione.
Production of new materials for the valorization of the agro-residual biomass of the chestnut production chain (Chestmat)
GUAGLIANO, MARIANNA
2024/2025
Abstract
In this PhD thesis the use of biochar obtained by chestnut waste, primarily, and other lignocellulosic residues was investigated following the principle of circularity and sustainability. Biochar was extensively characterized by several techniques, that allow to deeply investigate its textural, morphological and chemico-physical characteristics. Chestnut wastes have been proven to be an excellent raw material for the development of multi-function biochar. However, the experimental conditions of the thermochemical processes (gasification/pyrolysis) are extremely important for the characteristics of the final material. The biochar obtained by pyrolysis or gasification of the chestnuts residual biomass were produced at the BEELab, University of Modena and Reggio Emilia. Furthermore, commercial biochar, obtained by other residual biomasses, were also investigated to validate and generalize the utilization of biochar. Textural properties, as well as surface charge and surface functional groups make biochar a promising candidate as carrier of bioactive molecules for improved feed in animal nutrition, as sorbent for capture of inorganic and organic pollutants, as well as support for the development of biochar-based photocatalysts for organic pollutant removal. In particular, in feed application, chestnut biochar (CB) and vine pruning biochar (VB) have been tested as carriers of egg white lysozyme (LY) to prevent its degradation during the gastric passage in weaned pigs. Simulating the pH condition of the gastrointestinal environment, a slight increase of lysozyme release was observed, suggesting a potential application of biochar in controlled release and delivery of bioactive molecules within the animal intestinal environment. Moreover, the bioactive extracts from CB and VB show antioxidant and antimicrobial activities that can enhance the well-being of the animals. In wastewater treatment, six different chestnut biochar were studied as sorbents for copper (Cu) and zinc (Zn), chosen as model pollutants in piglets’ slurry. Chestnut biochar obtained via gasification was found to be a better performing sorbent both for copper and zinc, than the biochar obtained by pyrolysis. Apparently, a correlation between the surface area and the adsorption capability is present. Also, the adsorption of Lanthanum (La), Neodymium (Nd) and Yttrium (Y), selected as representative of Rare Earths (REs), was evaluated by using chestnut wastes-based and commercial lignocellulosic biochar. The capture capability depends on both the sorbent and the REs nature, and it is not influenced by the morphology of the sorbent. With the most effective biochar, a commercial one, capture yield in the range 45-69% is reached, depending on the REs. Exploring the potential application of biochar in industrial sector, biochar was successfully incorporated in 3-D structured material, using geopolymer as additives to form a granulated material which has been employed in column-test for the removal of pollutants reaching a copper removal of 70%. Finally, both chestnut biochar and commercial biochar were investigated as potential support for the development of supported catalysts for the removal of Diclofenac through a combined adsorption-photocatalysis approach reaching the almost total removal of Diclofenac in 120 minutes.File | Dimensione | Formato | |
---|---|---|---|
PhD Tesi Marianna Guagliano DEFINITIVA..pdf
non accessibile
Dimensione
40.33 MB
Formato
Adobe PDF
|
40.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237537