The transition toward sustainable energy systems has driven the development of advanced energy conversion and storage technologies, among which Solid Oxide Cells (SOCs) have emerged as highly efficient electrochemical devices. Their reversible operation as Solid Oxide Fuel Cells (SOFCs) for power generation and Solid Oxide Electrolysis Cells (SOECs) for hydrogen and syngas production makes them an attractive solution for integrating renewable energy sources while enabling CO2 utilization via co-electrolysis. However, the durability and efficiency of SOCs remain partially limited by the stability and catalytic performance of its fuel electrode particularly under redox cycling and CO2-rich atmospheres. This thesis explores perovskite-based electrodes as an alternative to conventional Ni-YSZ electrodes, focusing on SrTi0.3Fe0.7O3₋δ (STF) and Ni-substituted Sr0.95(Ti0.3Fe0.63Ni0.07)O3₋δ (STF-Ni) to address key degradation mechanisms that occur in conventional electrodes. A systematic research approach was followed, encompassing material synthesis, structural characterization, electrochemical testing, and operando analysis. A synthesis procedure was developed for STF and STF-Ni powders via solid-state reactive sintering and integrated into a new protocol for electrolyte-supported cell manufacturing using screen printing onto scandia-stabilized zirconia electrolytes. The performance of the fabricated SOCs was assessed through polarization curves, electrochemical impedance spectroscopy, and stability tests under various operating conditions, including H2/H2O and CO/CO2 reversible operation as well as CO2/H2O co-electrolysis. The underlying structural and chemical changes occurring in STF and STF-Ni under operational conditions were further analyzed using operando X-ray diffraction (XRD) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), providing insight into phase stability, cation segregation, and nanoparticle evolution. STF-Ni exhibited superior electrochemical performance compared to STF and traditional Ni-YSZ electrodes. Under 3% humidified H2, STF-Ni achieved a peak power density of 415 mW/cm2 at 750°C, outperforming STF (392 mW/cm2) and Ni-YSZ of comparable thickness. The exsolution of Ni-Fe nanoparticles on STF-Ni likely enhanced its catalytic activity, improving hydrogen oxidation kinetics and electronic conductivity. In reversible H2/H2O operation, STF-Ni maintained 96% of its initial performance in over 96 hours. Reversible operation with CO/CO2 mixtures proved most challenging for STF and STF-Ni, as surface SrCO3 formation caused significant degradation. However, STF-Ni demonstrated comparatively higher stability in CO2-rich conditions, albeit with an initial drop in current density, which stabilized over time. In co-electrolysis, STF-Ni delivered a maximum current density of 540 mA/cm2 at 1.4 V, with 15% performance drop at 1.2 V after 162 hours. In the end, STF-Ni showed in all operating modes superior stability compared to STF. Operando XRD demonstrated that both materials retained their cubic perovskite structure under reducing and oxidizing conditions, though STF-Ni exhibited the formation of Ni-Fe alloy nanoparticles above 450°C under 5% H2. Temperature-programmed reduction experiments confirmed that STF-Ni was more reducible than STF, with Ni facilitating the exsolution of Fe at lower temperatures. Thermogravimetric analysis also indicated that under 5% H2 STF-Ni presented higher oxygen vacancy formation and enhanced reducibility. Upon exposure to CO2, STF and STF-Ni exhibited a considerable weight gain with respect to their reduced state, likely due to strong CO2 interaction with their surface and possible carbonate formation. NAP-XPS revealed that STF-Ni exhibited a stronger redox response than STF, with Fe undergoing reversible oxidation, and Ni remaining in a partially oxidized state. Under reducing conditions, Ni and Fe both presented spectral features associated with metallic nanoparticles. Transmission electron microscopy showed that STF-Ni developed a dense network of Ni-Fe nanoparticles (average size: 15 nm after reduction, growing to 25 nm after CO₂ exposure), whereas STF remained largely unchanged. Elemental mapping via EDS confirmed that Fe reabsorbed into the perovskite bulk under exposure to CO2, while Ni persisted as surface-bound nanoparticles. In contrast, STF exhibited significant Sr segregation, leading to the formation of an insulating SrCO3 layer, which could have contributed to its rapid performance degradation in CO/CO2 rSOC mode. Kinetic analysis in co-electrolysis mode revealed that the presence of CO2 in the feed had no measurable impact on the reaction kinetics, with the electrode displaying preferential activity for H2O reduction over CO2 reduction. A 0D electrochemical model of the cell was developed to simulate the I/V behavior of STF-Ni across SOFC, rSOC, and co-electrolysis modes. The model effectively captured the kinetic behavior observed in the experiments, demonstrating a unitary reaction order for H2, while H2O and CO2 exhibited zero-order dependencies, reinforcing the hypothesis that CO₂ reduction was negligible in the presence of steam. Overall, this work highlights the potential of STF-Ni as a robust fuel electrode for rSOCs, offering improved performance, durability, and resistance to degradation compared to its bare STF perovskite counterpart. The exsolution of Ni-Fe nanoparticles significantly enhances the catalytic activity and stability of STF-Ni, making it a promising candidate for next-generation SOC applications.
La transizione verso sistemi energetici sostenibili ha stimolato lo sviluppo di tecnologie avanzate per la conversione e l’accumulo dell’energia, tra cui le celle a ossidi solidi (Solid Oxide Cells, SOCs) si distinguono come dispositivi elettrochimici altamente efficienti. Il loro funzionamento reversibile come celle a combustibile (SOFCs), per la generazione di energia elettrica, e come celle elettrolitiche (SOECs), per la produzione di idrogeno e syngas, le rende una soluzione promettente per l’integrazione delle fonti rinnovabili e per l’utilizzo della CO₂ attraverso la co-elettrolisi. Tuttavia, la durabilità e l’efficienza complessiva delle SOCs risultano ancora limitate dalla stabilità e dalle prestazioni catalitiche dell’elettrodo a combustibile, in particolare in condizioni di cicli redox e atmosfere ricche di CO₂. In questa tesi sono stati studiati elettrodi a base di perovskiti come alternativa ai convenzionali elettrodi Ni-YSZ, con particolare attenzione a SrTi₀.₃Fe₀.₇O₃₋δ (STF) e alla sua variante dopata con nichel, Sr₀.₉₅(Ti₀.₃Fe₀.₆₃Ni₀.₀₇)O₃₋δ (STF-Ni), al fine di affrontare i principali meccanismi di degradazione riscontrati negli elettrodi tradizionali. È stato adottato un approccio sperimentale sistematico che ha incluso la sintesi dei materiali, la caratterizzazione strutturale, la valutazione elettrochimica e l’analisi operando. È stata messa a punto una procedura di sintesi delle polveri di STF e STF-Ni mediante solid state sintering, poi integrata in un protocollo innovativo per la fabbricazione di celle elettrolita supportate che sono state realizzate tramite serigrafia su elettroliti in zirconia stabilizzata con scandia. Le prestazioni delle celle sono state analizzate tramite curve di polarizzazione, spettroscopia di impedenza elettrochimica e test di stabilità in diverse condizioni operative, comprese modalità reversibili H₂/H₂O e CO/CO₂, oltre alla co-elettrolisi di CO₂/H₂O. Le trasformazioni strutturali e chimiche di STF e STF-Ni durante il funzionamento sono state ulteriormente investigate tramite diffrazione operando ai raggi X (XRD) e spettroscopia fotoelettronica a raggi X in condizioni di pressione quasi-ambientale (NAP-XPS), consentendo di ottenere informazioni dettagliate su stabilità di fase, segregazione cationica ed evoluzione delle nanoparticelle. STF-Ni ha evidenziato prestazioni elettrochimiche superiori rispetto a STF e agli elettrodi tradizionali in Ni-YSZ. In atmosfera di H₂ al 3% di umidità, ha raggiunto una densità di potenza massima pari a 415 mW/cm² a 750°C, superando STF (392 mW/cm²) e Ni-YSZ di spessore comparabile. L’esoluzione di nanoparticelle Ni-Fe dalla matrice perovskitica in STF-Ni ha verosimilmente potenziato l’attività catalitica, migliorando la cinetica di ossidazione dell’idrogeno e la conducibilità elettronica. In modalità reversibile H₂/H₂O, STF-Ni ha mantenuto il 96% della prestazione iniziale per oltre 96 ore. Il funzionamento con miscele CO/CO₂ ha rappresentato la condizione più complessa per entrambi i materiali, a causa della formazione superficiale di SrCO₃ che ha causato un deterioramento significativo. Tuttavia, STF-Ni ha dimostrato una maggiore stabilità rispetto a STF, con una riduzione iniziale della densità di corrente che si è stabilizzata nel tempo. Durante la co-elettrolisi, STF-Ni ha raggiunto una densità di corrente massima di 540 mA/cm² a 1.4 V, con un calo del 15% a 1.2 V dopo 162 ore. In tutte le modalità operative, STF-Ni ha evidenziato una stabilità superiore rispetto a STF. Le analisi XRD operando hanno confermato che entrambi i materiali conservano la struttura perovskitica cubica sia in condizioni riducenti che ossidanti; tuttavia, STF-Ni ha mostrato la formazione di nanoparticelle Ni-Fe sopra i 450°C in presenza di H₂ al 5%. Esperimenti di riduzione programmata in temperatura (TPR) hanno indicato una maggiore riducibilità di STF-Ni rispetto a STF, con il nichel che favorisce l’esoluzione del ferro a temperature inferiori. Anche l’analisi termogravimetrica ha mostrato una maggiore formazione di vacanze di ossigeno in STF-Ni in atmosfera riducente. In presenza di CO₂, entrambi i materiali hanno mostrato un aumento significativo di peso rispetto allo stato ridotto, probabilmente dovuto all’interazione con la superficie e alla possibile formazione di carbonati. Le analisi NAP-XPS hanno evidenziato una risposta redox più marcata in STF-Ni rispetto a STF, con ossidazione reversibile del ferro e nichel in stato parzialmente ossidato. In condizioni riducenti, entrambi gli elementi hanno presentato caratteristiche spettrali compatibili con nanoparticelle metalliche. La microscopia elettronica a trasmissione (TEM) ha rivelato la formazione, in STF-Ni, di una fitta rete di nanoparticelle Ni-Fe (dimensioni medie: 15 nm dopo la riduzione, fino a 25 nm dopo esposizione a CO₂), mentre STF è rimasto sostanzialmente invariato. Le mappature EDS hanno mostrato che il ferro viene reincorporato nella struttura perovskitica dopo l’esposizione a CO₂, mentre il nichel permane sotto forma di nanoparticelle superficiali. Al contrario, STF ha evidenziato una marcata segregazione dello stronzio, con formazione di uno strato isolante di SrCO₃, potenzialmente responsabile della rapida degradazione osservata in modalità rSOC con CO/CO₂. L’analisi cinetica in co-elettrolisi ha mostrato che la presenza di CO₂ nel flusso alimentato non ha avuto impatti misurabili sulla cinetica di reazione, indicando una preferenza per la riduzione di H₂O rispetto alla riduzione di CO₂. È stato sviluppato un modello elettrochimico 0D per simulare il comportamento corrente/tensione (I/V) di STF-Ni nelle modalità SOFC, rSOC e co-elettrolisi. Il modello ha riprodotto con buona accuratezza i dati sperimentali, evidenziando un ordine di reazione unitario per H₂, e di ordine zero per H₂O e CO₂, a sostegno dell’ipotesi che la riduzione della CO₂ sia trascurabile in presenza di vapore acqueo. Nel complesso, questo lavoro mette in luce il potenziale di STF-Ni come elettrodo a combustibile robusto per celle rSOC, offrendo prestazioni superiori, maggiore durabilità e resistenza al degrado rispetto al materiale perovskitico STF non modificato. L’esoluzione controllata di nanoparticelle Ni-Fe ne potenzia in modo significativo l’attività catalitica e la stabilità, rendendo STF-Ni un candidato promettente per le future generazioni di celle a ossidi solidi.
Characterization of perovskite-based solid oxide cells for reversible and co-electrolysis operations
DÍAZ LACHARME, MARÍA CARMENZA
2024/2025
Abstract
The transition toward sustainable energy systems has driven the development of advanced energy conversion and storage technologies, among which Solid Oxide Cells (SOCs) have emerged as highly efficient electrochemical devices. Their reversible operation as Solid Oxide Fuel Cells (SOFCs) for power generation and Solid Oxide Electrolysis Cells (SOECs) for hydrogen and syngas production makes them an attractive solution for integrating renewable energy sources while enabling CO2 utilization via co-electrolysis. However, the durability and efficiency of SOCs remain partially limited by the stability and catalytic performance of its fuel electrode particularly under redox cycling and CO2-rich atmospheres. This thesis explores perovskite-based electrodes as an alternative to conventional Ni-YSZ electrodes, focusing on SrTi0.3Fe0.7O3₋δ (STF) and Ni-substituted Sr0.95(Ti0.3Fe0.63Ni0.07)O3₋δ (STF-Ni) to address key degradation mechanisms that occur in conventional electrodes. A systematic research approach was followed, encompassing material synthesis, structural characterization, electrochemical testing, and operando analysis. A synthesis procedure was developed for STF and STF-Ni powders via solid-state reactive sintering and integrated into a new protocol for electrolyte-supported cell manufacturing using screen printing onto scandia-stabilized zirconia electrolytes. The performance of the fabricated SOCs was assessed through polarization curves, electrochemical impedance spectroscopy, and stability tests under various operating conditions, including H2/H2O and CO/CO2 reversible operation as well as CO2/H2O co-electrolysis. The underlying structural and chemical changes occurring in STF and STF-Ni under operational conditions were further analyzed using operando X-ray diffraction (XRD) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), providing insight into phase stability, cation segregation, and nanoparticle evolution. STF-Ni exhibited superior electrochemical performance compared to STF and traditional Ni-YSZ electrodes. Under 3% humidified H2, STF-Ni achieved a peak power density of 415 mW/cm2 at 750°C, outperforming STF (392 mW/cm2) and Ni-YSZ of comparable thickness. The exsolution of Ni-Fe nanoparticles on STF-Ni likely enhanced its catalytic activity, improving hydrogen oxidation kinetics and electronic conductivity. In reversible H2/H2O operation, STF-Ni maintained 96% of its initial performance in over 96 hours. Reversible operation with CO/CO2 mixtures proved most challenging for STF and STF-Ni, as surface SrCO3 formation caused significant degradation. However, STF-Ni demonstrated comparatively higher stability in CO2-rich conditions, albeit with an initial drop in current density, which stabilized over time. In co-electrolysis, STF-Ni delivered a maximum current density of 540 mA/cm2 at 1.4 V, with 15% performance drop at 1.2 V after 162 hours. In the end, STF-Ni showed in all operating modes superior stability compared to STF. Operando XRD demonstrated that both materials retained their cubic perovskite structure under reducing and oxidizing conditions, though STF-Ni exhibited the formation of Ni-Fe alloy nanoparticles above 450°C under 5% H2. Temperature-programmed reduction experiments confirmed that STF-Ni was more reducible than STF, with Ni facilitating the exsolution of Fe at lower temperatures. Thermogravimetric analysis also indicated that under 5% H2 STF-Ni presented higher oxygen vacancy formation and enhanced reducibility. Upon exposure to CO2, STF and STF-Ni exhibited a considerable weight gain with respect to their reduced state, likely due to strong CO2 interaction with their surface and possible carbonate formation. NAP-XPS revealed that STF-Ni exhibited a stronger redox response than STF, with Fe undergoing reversible oxidation, and Ni remaining in a partially oxidized state. Under reducing conditions, Ni and Fe both presented spectral features associated with metallic nanoparticles. Transmission electron microscopy showed that STF-Ni developed a dense network of Ni-Fe nanoparticles (average size: 15 nm after reduction, growing to 25 nm after CO₂ exposure), whereas STF remained largely unchanged. Elemental mapping via EDS confirmed that Fe reabsorbed into the perovskite bulk under exposure to CO2, while Ni persisted as surface-bound nanoparticles. In contrast, STF exhibited significant Sr segregation, leading to the formation of an insulating SrCO3 layer, which could have contributed to its rapid performance degradation in CO/CO2 rSOC mode. Kinetic analysis in co-electrolysis mode revealed that the presence of CO2 in the feed had no measurable impact on the reaction kinetics, with the electrode displaying preferential activity for H2O reduction over CO2 reduction. A 0D electrochemical model of the cell was developed to simulate the I/V behavior of STF-Ni across SOFC, rSOC, and co-electrolysis modes. The model effectively captured the kinetic behavior observed in the experiments, demonstrating a unitary reaction order for H2, while H2O and CO2 exhibited zero-order dependencies, reinforcing the hypothesis that CO₂ reduction was negligible in the presence of steam. Overall, this work highlights the potential of STF-Ni as a robust fuel electrode for rSOCs, offering improved performance, durability, and resistance to degradation compared to its bare STF perovskite counterpart. The exsolution of Ni-Fe nanoparticles significantly enhances the catalytic activity and stability of STF-Ni, making it a promising candidate for next-generation SOC applications.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Final_Diaz_Lacharme.pdf
non accessibile
Descrizione: Tesi di dottorato
Dimensione
37.87 MB
Formato
Adobe PDF
|
37.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237597