The primary threats to flight safety typically arise from two aspects: aircraft engine fail- ures and structural fatigue issues. The rotor system, as a critical component of aero engines, includes typical parts such as rotors, bearings, and blades. These parts are prone to damage or failure due to material defects or harsh operating conditions like high temperature, high pressure, and high speed. On the other hand, plate-like structures like aircraft fuselage and wings, are prone to structural damage due to material defects or harsh environment such as repeated loads, stress Concentration, and corrosion. These damage and failure not only affects the performance and lifespan of the aircraft but could also pose serious threats to aviation safety. Therefore, it is imperative to conduct comprehensive monitoring for aircracft structures like the rotor system in aero engines and plate-like structures such as aircraft fuselage and wings. Accurate detection and diagnosis of damage and failure severity, particularly during the potential or early stages of failure, are essential to enable timely make actions, ensuring flight safety and safeguarding overall aviation security. However, due to limitations in the installation positions and numbers of sensors on aircraft structures, as well as complex signal propagation paths, and the characteristics of the medium, signals often couple and attenuate during transmission, making early fault features weak. Additionally, the uncertainty, dynamic evolution, and nonlinear characteristics of fault features pose significant challenges for structural health monitoring and life prediction for aircraft components. In recent years, Nonlinear Output Frequency Response Functions (NOFRFs) have emerged as an effective nonlinear analysis method capable of characterizing early weak fault features in structures. Further research into this method is expected to enable quantitative analysis and diagnosis of early faults. Particle filtering, as an effective state estimation method, can estimate the structural state and predict the remaining life of the structure based on the quantitative analysis of NOFRFs. This paper focuses on aircraft components, addressing the challenges of quantitative diagnosis and life prediction for early weak faults in typical structures such as rotor systems and plate-like structures like aircraft fuselage, wings and so on. A combined approach of simulation and experiment is adopted to propose an improved Nonlinear Output Frequency Response Functions weighted contribution rate (WNOFRFs) method. Based on this method, damage indexes are proposed to quantitatively represent typical faults in aircraft components. Furthermore, by combining these indexes with particle filtering algorithms, the remaining life prediction of aircraft components is further carried out. Fault simulations and experiments are conducted on the rotor system and plate-like structures. The effectiveness of the proposed method is verified using vibration and guided wave signals from aircraft components, respectively. The present thesis makes three contributions to the health monitoring and prediction of aerospace structures. First, an improved WNOFRFs method based on divergence theory is proposed. This method is applied to the vibration signals analysis of the rotor system, and tailored damage indicators are introduced to accurately and quantitatively diagnose rotor rub-impact, cracks, and misalignment faults. Second, for the first time, the NOFRFs theory is applied to guided wave signal analysis. The proposed method is used to conduct quantitative analysis of damage in plate-like structures. Third, the improved WNOFRFs method is combined with particle filtering to achieve damage state estimation and remaining life prediction. To verify the effectiveness of the proposed method in diagnosing faults in the rotor system, simulations and experimental work were carried out. Simulations were conducted on typical faults of the rotor system, such as rub-impact, cracks, and misalignment. dynamic models of different faulty rotors were established. And the performance of the proposed improved WNOFRFs method in diagnosing rotor system faults was verified through simulated dynamic models. Moreover, rotor fault experiments were conducted, setting different levels of rub-impact, cracks, and misalignment faults, respectively. The proposed method was employed to analyze the vibration signals collected during the experiments, yielding reliable and accurate diagnostic results, especially for early faults. It has been verified that the proposed method also demonstrates excellent robustness. To verify the effectiveness of the proposed method in diagnosing damage on the plate-like structures, the following work has been primarily carried out. The WNOFRFs method was combined with the NARX model to analyze the vibration signals of a beam structure. A cantilever beam structure with a crack was simulated, and the effectiveness of the proposed method was verified for the simulation model. Furthermore, experiments on a cracked cantilever beam were conducted to further validate the method. Based on this research, the method was combined with the particle filter method for damage monitoring and remaining life prediction of plate-like structures. The results of the experiments on Lamb waves in plate-like structures demonstrate the effectiveness and precision of the framework in estimating crack lengths and predicting remaining useful life for nonlinear early fatigue cracks.
Le principali minacce alla sicurezza del volo derivano tipicamente da due aspetti: guasti al motore dell'aeromobile e problemi di fatica strutturale. Il sistema rotante, come componente critico dei motori aeronautici, include parti tipiche come rotori, cuscinetti e pale. Queste parti sono suscettibili a danni o guasti a causa di difetti nei materiali o condizioni operative difficili, come alte temperature, alta pressione e alta velocità. D'altra parte, strutture simili a piastre come la fusoliera e le ali degli aeromobili sono soggette a danni strutturali a causa di difetti nei materiali o ambienti difficili come carichi ripetuti, concentrazione di stress e corrosione. Questi danni e guasti non solo influiscono sulle prestazioni e sulla durata dell'aeromobile, ma possono anche rappresentare minacce gravi per la sicurezza dell'aviazione. Pertanto, è imperativo condurre un monitoraggio completo delle strutture aeronautiche come il sistema rotante nei motori aeronautici e strutture simili a piastre come la fusoliera e le ali degli aeromobili. Una rilevazione accurata e una diagnosi della gravità dei danni e dei guasti, in particolare nelle fasi potenziali o iniziali del guasto, sono essenziali per prendere azioni tempestive, garantendo la sicurezza del volo e la protezione della sicurezza complessiva dell'aviazione. Tuttavia, a causa delle limitazioni nelle posizioni e nel numero di sensori sulle strutture degli aeromobili, nonché dei complessi percorsi di propagazione del segnale e delle caratteristiche del mezzo, i segnali spesso si accoppiano e si attenuano durante la trasmissione, rendendo deboli le caratteristiche dei guasti precoci. Inoltre, l'incertezza, l'evoluzione dinamica e le caratteristiche non lineari delle caratteristiche dei guasti pongono sfide significative per il monitoraggio della salute strutturale e la previsione della vita dei componenti aeronautici. Negli ultimi anni, le funzioni di risposta in frequenza non lineare (NOFRFs) sono emerse come un efficace metodo di analisi non lineare in grado di caratterizzare le caratteristiche deboli di guasti precoci nelle strutture. Ulteriori ricerche su questo metodo si prevede possano consentire un'analisi e una diagnosi quantitative dei guasti precoci. Il filtraggio delle particelle, come metodo efficace di stima dello stato, può stimare lo stato strutturale e prevedere la vita residua della struttura sulla base dell'analisi quantitativa delle NOFRFs. Questo lavoro si concentra sui componenti aeronautici, affrontando le sfide della diagnosi quantitativa e della previsione della vita per i guasti deboli precoci in strutture tipiche come i sistemi rotanti e strutture simili a piastre come la fusoliera e le ali degli aeromobili. Viene adottato un approccio combinato di simulazione ed esperimento per proporre un metodo migliorato di funzione di risposta in frequenza non lineare ponderata (WNOFRFs). Sulla base di questo metodo, vengono proposti indicatori di danno per rappresentare quantitativamente i guasti tipici nei componenti aeronautici. Inoltre, combinando questi indicatori con algoritmi di filtraggio delle particelle, si procede alla previsione della vita residua dei componenti aeronautici. Vengono condotte simulazioni e esperimenti di guasto sul sistema rotante e su strutture simili a piastre. L'efficacia del metodo proposto viene verificata utilizzando segnali di vibrazione e onde guidate provenienti dai componenti aeronautici. La presente tesi apporta tre contributi al monitoraggio della salute e alla previsione delle strutture aerospaziali. In primo luogo, viene proposto un metodo migliorato di WNOFRFs basato sulla teoria della divergenza. Questo metodo viene applicato all'analisi dei segnali di vibrazione del sistema rotante, e vengono introdotti indicatori di danno personalizzati per diagnosticare in modo preciso e quantitativo i guasti da impatto, crepe e disallineamento del rotore. In secondo luogo, per la prima volta, la teoria delle NOFRFs viene applicata all'analisi dei segnali delle onde guidate. Il metodo proposto viene utilizzato per condurre un'analisi quantitativa dei danni nelle strutture simili a piastre. In terzo luogo, il metodo migliorato di WNOFRFs viene combinato con il filtraggio delle particelle per ottenere la stima dello stato del danno e la previsione della vita residua. Per verificare l'efficacia del metodo proposto nella diagnosi dei guasti nel sistema rotante, sono stati condotti lavori di simulazione ed esperimentazione. Sono state condotte simulazioni sui guasti tipici del sistema rotante, come l'impatto da rubinetto, le crepe e il disallineamento. Sono stati sviluppati modelli dinamici di diversi rotori difettosi. E le prestazioni del metodo migliorato di WNOFRFs proposto nella diagnosi dei guasti del sistema rotante sono state verificate attraverso modelli dinamici simulati. Inoltre, sono stati condotti esperimenti sui guasti del rotore, impostando diversi livelli di impatto da rubinetto, crepe e disallineamento. Il metodo proposto è stato utilizzato per analizzare i segnali di vibrazione raccolti durante gli esperimenti, ottenendo risultati diagnostici affidabili e accurati, in particolare per i guasti precoci. È stato verificato che il metodo proposto dimostra anche un'ottima robustezza. Per verificare l'efficacia del metodo proposto nella diagnosi dei danni nelle strutture simili a piastre, sono stati principalmente condotti i seguenti lavori. Il metodo WNOFRFs è stato combinato con il modello NARX per analizzare i segnali di vibrazione di una struttura a trave. È stata simulata una struttura a trave con crepe, e l'efficacia del metodo proposto è stata verificata per il modello di simulazione. Inoltre, sono stati condotti esperimenti su una trave a sbalzo con crepe per validare ulteriormente il metodo. Sulla base di questa ricerca, il metodo è stato combinato con il metodo del filtro delle particelle per il monitoraggio dei danni e la previsione della vita residua delle strutture simili a piastre. I risultati degli esperimenti sulle onde Lamb nelle strutture simili a piastre dimostrano l'efficacia e la precisione del framework nell'estimare le lunghezze delle crepe e nella previsione della vita utile residua per le crepe di fatica precoci non lineari.
Structural health monitoring and prediciton for aircraft components
Liang, Haiying
2024/2025
Abstract
The primary threats to flight safety typically arise from two aspects: aircraft engine fail- ures and structural fatigue issues. The rotor system, as a critical component of aero engines, includes typical parts such as rotors, bearings, and blades. These parts are prone to damage or failure due to material defects or harsh operating conditions like high temperature, high pressure, and high speed. On the other hand, plate-like structures like aircraft fuselage and wings, are prone to structural damage due to material defects or harsh environment such as repeated loads, stress Concentration, and corrosion. These damage and failure not only affects the performance and lifespan of the aircraft but could also pose serious threats to aviation safety. Therefore, it is imperative to conduct comprehensive monitoring for aircracft structures like the rotor system in aero engines and plate-like structures such as aircraft fuselage and wings. Accurate detection and diagnosis of damage and failure severity, particularly during the potential or early stages of failure, are essential to enable timely make actions, ensuring flight safety and safeguarding overall aviation security. However, due to limitations in the installation positions and numbers of sensors on aircraft structures, as well as complex signal propagation paths, and the characteristics of the medium, signals often couple and attenuate during transmission, making early fault features weak. Additionally, the uncertainty, dynamic evolution, and nonlinear characteristics of fault features pose significant challenges for structural health monitoring and life prediction for aircraft components. In recent years, Nonlinear Output Frequency Response Functions (NOFRFs) have emerged as an effective nonlinear analysis method capable of characterizing early weak fault features in structures. Further research into this method is expected to enable quantitative analysis and diagnosis of early faults. Particle filtering, as an effective state estimation method, can estimate the structural state and predict the remaining life of the structure based on the quantitative analysis of NOFRFs. This paper focuses on aircraft components, addressing the challenges of quantitative diagnosis and life prediction for early weak faults in typical structures such as rotor systems and plate-like structures like aircraft fuselage, wings and so on. A combined approach of simulation and experiment is adopted to propose an improved Nonlinear Output Frequency Response Functions weighted contribution rate (WNOFRFs) method. Based on this method, damage indexes are proposed to quantitatively represent typical faults in aircraft components. Furthermore, by combining these indexes with particle filtering algorithms, the remaining life prediction of aircraft components is further carried out. Fault simulations and experiments are conducted on the rotor system and plate-like structures. The effectiveness of the proposed method is verified using vibration and guided wave signals from aircraft components, respectively. The present thesis makes three contributions to the health monitoring and prediction of aerospace structures. First, an improved WNOFRFs method based on divergence theory is proposed. This method is applied to the vibration signals analysis of the rotor system, and tailored damage indicators are introduced to accurately and quantitatively diagnose rotor rub-impact, cracks, and misalignment faults. Second, for the first time, the NOFRFs theory is applied to guided wave signal analysis. The proposed method is used to conduct quantitative analysis of damage in plate-like structures. Third, the improved WNOFRFs method is combined with particle filtering to achieve damage state estimation and remaining life prediction. To verify the effectiveness of the proposed method in diagnosing faults in the rotor system, simulations and experimental work were carried out. Simulations were conducted on typical faults of the rotor system, such as rub-impact, cracks, and misalignment. dynamic models of different faulty rotors were established. And the performance of the proposed improved WNOFRFs method in diagnosing rotor system faults was verified through simulated dynamic models. Moreover, rotor fault experiments were conducted, setting different levels of rub-impact, cracks, and misalignment faults, respectively. The proposed method was employed to analyze the vibration signals collected during the experiments, yielding reliable and accurate diagnostic results, especially for early faults. It has been verified that the proposed method also demonstrates excellent robustness. To verify the effectiveness of the proposed method in diagnosing damage on the plate-like structures, the following work has been primarily carried out. The WNOFRFs method was combined with the NARX model to analyze the vibration signals of a beam structure. A cantilever beam structure with a crack was simulated, and the effectiveness of the proposed method was verified for the simulation model. Furthermore, experiments on a cracked cantilever beam were conducted to further validate the method. Based on this research, the method was combined with the particle filter method for damage monitoring and remaining life prediction of plate-like structures. The results of the experiments on Lamb waves in plate-like structures demonstrate the effectiveness and precision of the framework in estimating crack lengths and predicting remaining useful life for nonlinear early fatigue cracks.File | Dimensione | Formato | |
---|---|---|---|
Haiying___PhD_Thesis 20250414.pdf
solo utenti autorizzati a partire dal 14/04/2028
Descrizione: Text of the thesis
Dimensione
77.19 MB
Formato
Adobe PDF
|
77.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237637