Soil moisture is recognized by the Global Climate Observing System (GCOS) and the World Meteorological Organisation (WMO) as an essential climate variable, due to its influence on the land-atmosphere interface at both meteorological and climatic levels. Established techniques for measuring soil water content investigate either point spatial scales or very large scales (on the order of a square kilometer), essentially leaving the intermediate scale (hectare) uncovered. This can be investigated with the technique of cosmic-ray neutron sensing (CRNS), which estimates the soil water content from the intensity of cosmic-ray neutron flux at ground level. Neutron detectors for CRNS count interactions within their active volume to estimate neutron flux intensity. In this thesis, a neutron spectrometer was developed for CRNS measurements, which, in addition to neutron flux intensity, provides its energy distribution. The instrument was successfully characterized in reference fields. Subsequently, it was installed in the field and its capabilities to measure the natural neutron field were assessed. In general, its measurements of high-energy neutrons were consistent with those of independent neutron monitors. The effectiveness of the spectrometric technique for soil moisture estimation was found to be comparable to that of a counter, confirming the accuracy of the conventionally used methodology for CRNS. For this reason, the spectrometer can be considered an adequate instrument to measure the neutron energy distribution in low-intensity radiation fields, but cannot be regarded as a more effective alternative to traditional CRNS probes. Parallel to this activity, a detector for simultaneously measuring cosmic-ray neutrons and muons was characterized and deployed in the field. The first comparison between highenergy muon and neutron measurements shows an evident correlation between the two, although the oscillations in neutron flux demonstrate more marked variability compared to the muon counterpart. Prolonged measurements of these components of cosmogenic radiation will allow for a greater understanding of the variations in these particle fluxes at ground level and the potential use of muon measurements for CRNS.
L’umidità del suolo è riconosciuta dal Global Climate Observing System (GCOS) e dalla World Meteorological Organisation (WMO) come una variabile climatica essenziale, per l’influenza che esercita sull’interfaccia tra terra e atmosfera a livello meteorologico e climatico. Le tecniche consolidate di misura del contenuto idrico nel suolo investigano scale spaziali puntuali oppure molto estese (sull’ordine del chilometro quadrato), lasciando la scala intermedia (dell’ettaro) essenzialmente scoperta. Questa può essere investigata con la tecnica del Cosmic-Ray Neutron Sensing (CRNS) che stima il contenuto di acqua nel suolo partendo dall’intensità del flusso di neutroni cosmogenici a livello del suolo. I rivelatori neutronici per CRNS contano le interazioni nel loro volume attivo per stimare l’intensità di flusso neutronico. In questa tesi, è stato sviluppato uno spettrometro neutronico per misure di CRNS, che, in aggiunta all’intensità del flusso neutronico, ne fornisce anche la distribuzione energetica. Lo strumento è stato caratterizzato con successo in campi di riferimento. In seguito, è stato istallato in campo e le sue abilità in termini di misura del campo neutronico naturale sono state valutate. In generale, le sue misure di neutroni di alta energia sono state coerenti con quelle di neutron monitor indipendenti. L’efficacia della tecnica spettrometrica per la stima di umidià nel suolo è risultata paragonabile a quella di un contatore, confermando l’accuratezza della metodologia convenzionalmente utilizzata per il CRNS. Per questo motivo, lo spettrometro può essere considerato uno strumento adatto a misure di spettrometria neutronica in campi di bassa intensità, ma non come un’alternativa più efficace delle sonde CRNS convenzionali. Parallelamente a questa attività, un detector per rivelare simultaneamente neutroni e muoni di origine cosmica è stato caratterizzato e impiegato in campo. Il primo confronto tra misure di muoni e neutroni di alta energia mostra un’evidente correlazione tra queste, sebbene le oscillazioni del flusso neutronico mostrino una variabilità più marcata della controparte muonica. Misure prolungate di queste componenti della radiazione cosmogenica permetteranno una maggiore comprensione delle variazioni di flussi di queste particelle a livello del suolo e l’eventuale impiego di misure muoniche per CRNS.
Assessment of climate change variables with cosmic ray neutron sensing
Cirillo, Andrea
2024/2025
Abstract
Soil moisture is recognized by the Global Climate Observing System (GCOS) and the World Meteorological Organisation (WMO) as an essential climate variable, due to its influence on the land-atmosphere interface at both meteorological and climatic levels. Established techniques for measuring soil water content investigate either point spatial scales or very large scales (on the order of a square kilometer), essentially leaving the intermediate scale (hectare) uncovered. This can be investigated with the technique of cosmic-ray neutron sensing (CRNS), which estimates the soil water content from the intensity of cosmic-ray neutron flux at ground level. Neutron detectors for CRNS count interactions within their active volume to estimate neutron flux intensity. In this thesis, a neutron spectrometer was developed for CRNS measurements, which, in addition to neutron flux intensity, provides its energy distribution. The instrument was successfully characterized in reference fields. Subsequently, it was installed in the field and its capabilities to measure the natural neutron field were assessed. In general, its measurements of high-energy neutrons were consistent with those of independent neutron monitors. The effectiveness of the spectrometric technique for soil moisture estimation was found to be comparable to that of a counter, confirming the accuracy of the conventionally used methodology for CRNS. For this reason, the spectrometer can be considered an adequate instrument to measure the neutron energy distribution in low-intensity radiation fields, but cannot be regarded as a more effective alternative to traditional CRNS probes. Parallel to this activity, a detector for simultaneously measuring cosmic-ray neutrons and muons was characterized and deployed in the field. The first comparison between highenergy muon and neutron measurements shows an evident correlation between the two, although the oscillations in neutron flux demonstrate more marked variability compared to the muon counterpart. Prolonged measurements of these components of cosmogenic radiation will allow for a greater understanding of the variations in these particle fluxes at ground level and the potential use of muon measurements for CRNS.File | Dimensione | Formato | |
---|---|---|---|
Cirillo_PhD_Thesis.pdf
solo utenti autorizzati a partire dal 16/04/2026
Descrizione: Thesis File
Dimensione
13.52 MB
Formato
Adobe PDF
|
13.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237777