This thesis investigates chemical kinetic in condensed phase through molecular simulations. Semi-empirical metadynamics is employed to discover reaction mechanisms in solution. The kinetic rate parameters in solution are calculated from the free energy profiles along an effective reaction coordinate in the generalized transition state theory framework or by correcting harmonic transition state theory with statistical informations derived from the free energy profiles. The transition states found in the low-dimensional effective reaction coordinate space are validated through histogram test or frequency analysis. The final aim of the work is to gain insights from theoretical calculations to be applied to systems that are currently of interest to the chemical industry, namely waste recycling processes, in a multi-scale reactor simulation framework. Industrially, solid plastic waste and biomass waste can be converted into valuable products, such as chemicals, fuels and energy vectors through thermochemical recycling technologies such as pyrolysis and gasification. These chemical processes are carried out at elevated temperature and are able to treat complex mixtures which are multi-component and multiphase in nature. The flexibility of these technologies pose several challenges under the design point of view. In fact, designing chemical reactors of such complexity requires kinetic and reactor models that can predict the product distribution at varying operative conditions and mixture compositions. Unfortunately, experimental and theoretical studies in pyrolytic conditions are scarce and focus only on bi-component mixtures. For this reason, in this study we have picked kinetic rate measurements for validation from literature studies performed in a lower temperature range with respect to pyrolytic conditions, but providing parameters of interest also for pyrolysis processes. The approach followed in this work focuses on determining solvent-dependent correction coefficients to individual kinetic rate parameters of elementary reactions. The rate parameters so determined can then be introduced into detailed kinetic mechanisms in a multi-scale reactor simulation fashion to be compared with experiments from the literature. Firstly, a protocol for studying chemical reactions in which the solvent does not participate directly to the transition state is presented. In this case, the rate parameters of $\beta$-scission and backbiting, which play a crucial role in pyrolytic processes, of poly-butyl acrylate are calculated through a hybrid quantum mechanics/molecular mechanics approach where various polar and non-polar solvents, that is, butyl acrylate monomer, water and a mixture of ortho-/metha-/para-xylene are treated with a classical force field whereas the reacting moiety is described with tight-binding density functional theory. The solvent-dependent rate parameters are validated against pulsed laser polymerization (PLP) experiments and feed-starved semibatch experiments from the literature, which are performed in butyl acrylate monomer (or bulk) and in solution. Lastly, a case involving solvent participation to the transition state is discussed, namely lactose mutarotation in pure water and in water/methanol and water/acetone mixtures. The calculated kinetic constants of lactose mutarotation are then compared with high-performance liquid chromatography (HPLC) experiments from the literature.
Questa tesi studia la cinetica chimica in fase condensata attraverso simulazioni molecolari. La metadinamica semi-empirica è stata utilizzata per scoprire meccanismi reattivi in soluzione. Le costanti cinetiche in soluzione sono calcolate dai profili di energia libera lungo una coordinata di reazione efficace nel quadro della teoria generalizzata dello stato di transizione oppure correggendo la teoria dello stato di transizione armonica con informazioni statistiche derivate dai profili di energia libera. Gli stati di transizione trovati nello spazio a bassa dimensionalità delle coordinate di reazione efficaci sono validati tramite test dell'istogramma o analisi delle frequenze. Lo scopo finale di questo studio consiste nell'applicare le conoscenze acquisite dai calcoli teorici a sistemi attualmente di interesse per l'industria chimica, in particolare il riciclo dei rifiuti, nel contesto di simulazioni multiscala di reattori chimici. A livello industriale, i rifiuti plastici solidi e i rifiuti di biomassa possono essere convertiti in prodotti a più alto valore aggiunto, come prodotti chimici, combustibili e vettori energetici attraverso tecnologie di riciclo termochimico come la pirolisi e la gassificazione. Questi processi chimici sono condotti a temperatura elevata e sono in grado di trattare miscele complesse che sono di natura multicomponente e multifase. La flessibilità di queste tecnologie pone diverse sfide dal punto di vista della progettazione. Infatti, la progettazione di reattori chimici di tale complessità richiede una modellazione cinetica in grado di prevedere la distribuzione dei prodotti a diverse condizioni operative. Tuttavia, gli studi sperimentali e teorici in condizioni pirolitiche sono scarsi e si concentrano solo su miscele bicomponenti. Per questo motivo, in questo studio abbiamo selezionato misure di costanti cinetiche da lavori presenti in letteratura condotti in un intervallo di temperatura inferiore rispetto a quello tipico della pirolisi, ma che forniscono comunque parametri di interesse anche per i processi pirolitici. L'approccio seguito in questo lavoro si basa sulla determinazione dei coefficienti correttivi di solvatazione per ciascun parametro cinetico elementare. I parametri cinetici così ottenuti vengono poi introdotti in meccanismi cinetici dettagliati, che sono a loro volta impiegati nella simulazione di reattori chimici per essere confrontati con esperimenti dalla letteratura. In primo luogo, viene presentato un protocollo per lo studio delle reazioni chimiche in cui il solvente non partecipa direttamente allo stato di transizione. In questo caso, i parametri cinetici della $\beta$-scissione e del backbiting, che sono rilevanti nei processi pirolitici, del poli-butil acrilato, sono calcolati attraverso un approccio ibrido di meccanica quantistica/meccanica molecolare in cui vari solventi, polari e non polari, ovvero, il bulk, l'acqua e una miscela di orto-/meta-/para-xilene, sono trattati con un campo di forze classico mentre la parte reagente è descritta con la teoria del funzionale di densità \textit{tight-binding}. I parametri cinetici dipendenti dal solvente sono validati rispetto a esperimenti di polimerizzazione laser pulsata (PLP) ed esperimenti semibatch con alimentazione limitata (o \textit{feed-starved}) dalla letteratura, poiché i dati sperimentali in condizioni di pirolisi sono scarsi. Infine, viene discusso un caso che coinvolge la partecipazione del solvente allo stato di transizione, ovvero la mutarotazione del lattosio in acqua pura e in miscele acqua/metanolo e acqua/acetone. Le costanti cinetiche di mutarotazione del lattosio calcolate sono poi confrontate con esperimenti dalla letteratura.
Molecular modeling of chemical kinetics in condensed phase
Serse, Francesco
2024/2025
Abstract
This thesis investigates chemical kinetic in condensed phase through molecular simulations. Semi-empirical metadynamics is employed to discover reaction mechanisms in solution. The kinetic rate parameters in solution are calculated from the free energy profiles along an effective reaction coordinate in the generalized transition state theory framework or by correcting harmonic transition state theory with statistical informations derived from the free energy profiles. The transition states found in the low-dimensional effective reaction coordinate space are validated through histogram test or frequency analysis. The final aim of the work is to gain insights from theoretical calculations to be applied to systems that are currently of interest to the chemical industry, namely waste recycling processes, in a multi-scale reactor simulation framework. Industrially, solid plastic waste and biomass waste can be converted into valuable products, such as chemicals, fuels and energy vectors through thermochemical recycling technologies such as pyrolysis and gasification. These chemical processes are carried out at elevated temperature and are able to treat complex mixtures which are multi-component and multiphase in nature. The flexibility of these technologies pose several challenges under the design point of view. In fact, designing chemical reactors of such complexity requires kinetic and reactor models that can predict the product distribution at varying operative conditions and mixture compositions. Unfortunately, experimental and theoretical studies in pyrolytic conditions are scarce and focus only on bi-component mixtures. For this reason, in this study we have picked kinetic rate measurements for validation from literature studies performed in a lower temperature range with respect to pyrolytic conditions, but providing parameters of interest also for pyrolysis processes. The approach followed in this work focuses on determining solvent-dependent correction coefficients to individual kinetic rate parameters of elementary reactions. The rate parameters so determined can then be introduced into detailed kinetic mechanisms in a multi-scale reactor simulation fashion to be compared with experiments from the literature. Firstly, a protocol for studying chemical reactions in which the solvent does not participate directly to the transition state is presented. In this case, the rate parameters of $\beta$-scission and backbiting, which play a crucial role in pyrolytic processes, of poly-butyl acrylate are calculated through a hybrid quantum mechanics/molecular mechanics approach where various polar and non-polar solvents, that is, butyl acrylate monomer, water and a mixture of ortho-/metha-/para-xylene are treated with a classical force field whereas the reacting moiety is described with tight-binding density functional theory. The solvent-dependent rate parameters are validated against pulsed laser polymerization (PLP) experiments and feed-starved semibatch experiments from the literature, which are performed in butyl acrylate monomer (or bulk) and in solution. Lastly, a case involving solvent participation to the transition state is discussed, namely lactose mutarotation in pure water and in water/methanol and water/acetone mixtures. The calculated kinetic constants of lactose mutarotation are then compared with high-performance liquid chromatography (HPLC) experiments from the literature.File | Dimensione | Formato | |
---|---|---|---|
THESIS_Serse.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
28.58 MB
Formato
Adobe PDF
|
28.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237797