Thermite-for-Demise (T4D) is a novel Design-for-Demise (D4D) concept leveraging the properties of energetic materials to aid spacecraft demise during re-entry. Its objective, and more broadly the one of D4D, is to provide solutions to reach a safe but economically sound end-of-life strategy for space systems operating in Low Earth Orbit. While their decommissioning through de-orbiting is necessary to avoid the proliferation of space debris, people and assets on the ground could be endangered by spacecraft that do not completely ablate during the re-entry phase. Energetic materials, and more specifically thermites, could provide a solution for this. Thermites are mixtures of metals and metal oxides, usually in powder form, which can react exothermically and in a self-sustaining way if a proper energetic stimulus is provided. Their reaction is characterized by a high adiabatic flame temperature and their high energetic density makes them appealing for compact applications. Moreover, several tuning leverages such as formulation, granulometry, and production processes can influence their reactivity and the outcomes of the reaction (e.g., the fraction of gaseous products). While several concepts have been proposed during the last decades on the use of these materials to provide additional enthalpy to a re-entering spacecraft or to control its fragmentation sequence, their potential use for D4D applications is still largely unexplored. In this work, a systematic study on this topic is presented. A simple integration concept, based on the integration of free-flowing thermite in the structural voids of spacecraft components, was selected to investigate the most fundamental aspects of this technology. From thermochemical and safety considerations, a mixture of aluminum and hematite was selected for tests up to an experimental campaign conducted at DLR's high-enthalpy hypersonic wind tunnel L2K. Mechanical activation was used to tune thermite reactivity, and a portfolio of formulations capable of passive ignition in a temperature range from 700 to 1500 K was obtained. Lab-scale tests quantified the heat transfer efficiency from a reaction thermite to its enclosing vessel to 60%. Then, seventeen wind tunnel tests were conducted on simple-shaped steel mock-ups containing thermite to study its impact on the demise process, varying geometry, thermite formulation, filling level, and heat load. Passive ignition was verified in all tests involving thermite, in the same temperature range as observed at the lab-scale experiments. In some cases, the internal thermite charge induced partial demise of the samples. Gas generation was recognized to have a detrimental effect for this integration strategy, leading to significant pressure buildup and to the ejection of part of the energetic material. Tomography, radiography, and XRD analysis revealed the tendency of the thermite products to segregate, resulting in a porous and fragile matrix (probably Al-based) in which solidified droplets (probably Fe-based) are dispersed. ESA's re-entry software SCARAB was extended with a thermite-dedicated model, which was used to rebuild the wind tunnel campaign. This numerical tool successfully described the ignition and effects of the thermite in the majority of cases, even if some phenomena such as the internal insulation due to the thermite presence, intermittent combustion, and partial ejection of reactive material were not included in the model. Then, the extended SCARAB software and a novel object-oriented code developed during this thesis, named TRANSIT, were used to simulate the effects that an internal thermite charge could have on simple-shaped spacecraft components during re-entry. For the selected test cases, the numerical tools predicted a benefit in terms of mass impacting on the ground for heat transfer efficiencies as low as 40%. Moreover, a genetic algorithm optimization conducted using TRANSIT suggests that the best strategy for this kind of application, not considering the effects of fragmentation, is a late and brief enthalpy release from the thermite, occurring as close as possible to the moment in which the spacecraft reaches its maximum temperature during re-entry.
Un nuovo concetto di Design-for-Demise (D4D), chiamato Thermite-for-Demise (T4D), punta ad utilizzare le proprietà dei materiali energetici per supportare la distruzione di sistemi spaziali durante il rientro atmosferico. Il suo obiettivo, come del resto quello del D4D in generale, è quello di ottenere una strategia sicura ma economica per il decomissionamento dei satelliti operanti in orbita bassa. Sebbene il rientro atmosferico alla fine della vita utile del satellite sia necessario per limitare la crescita degli space debris, le persone e i beni a terra potrebbero essere messi in pericolo dai sistemi spaziali che non si distruggono completamente durante il rientro. Per mitigare questo rischio, il concetto T4D propone l'utilizzo di alcune particolari miscele pirotecniche chiamate termiti. Le termiti sono miscele di metalli e ossidi metallici, tipicamente in forma di polvere, capaci di reagire esotermicamente e di autosostenere la loro reazione se sottoposte a un adeguato stimolo energetico. La loro reazione è caratterizzata da un'alta temperatura adiabatica di fiamma e la loro alta densità le rende interessanti per applicazioni che debbano essere compatte. Inoltre, diversi parametri possono essere utilizzati per influenzare la loro reattività e il risultato della loro reazione, come ad esempio la frazione di prodotti gassosi generati. Tra questi parametri, si ricordano la formulazione, la granulometria e i processi produttivi. Nonostante diversi concetti relativi all'uso di questi materiali per aiutare la distruzione di sistemi spaziali siano stati proposti nell'ultimo decennio, il loro possibile uso per applicazioni di D4D è stato ad oggi ancora poco studiato. Uno studio sistematico di questo argomento è presentato in questa tesi. Per studiarne gli aspetti fondamentali, si è selezionato un concetto di integrazione semplice, basato sull'inserimento di termiti in forma di polvere negli spazi strutturali di componenti spaziali. Partendo da considerazioni termochimiche e di sicurezza, si è scelta una miscela di alluminio ed ematite per una campagna sperimentale culminante in una serie di test presso la galleria del vento ipersonica ad alta entalpia L2K di DLR. Usando tecniche di attivazione meccanica ad alta energia, si è creato un portafoglio di formulazioni capaci di reagire in modo passivo se esposte a una temperatura compresa tra i 700 e i 1500 K. Test in piccola scala condotti presso il Politecnico di Milano hanno quantificato l'efficacia di scambio termico tra una carica di termite ed il suo contenitore, ottenendo un valore pari al 60%. Successivamente, si sono realizzati diciassette test in galleria del vento su mock-up di acciaio dalla forma semplice parzialmente riempiti di termite, al variare di geometria, formulazione, riempimento e carico termico. L'ignizione passiva della carica è avvenuta in tutti i test, a una temperatura analoga a quella misurata precedentemente in laboratorio. In alcuni casi, il calore rilasciato dalla termite ha provocato la parziale distruzione dei mock-up. I test hanno permesso di riconoscere il ruolo centrale giocato dalla generazione di specie gassose, che spesso è risultata in una diminuzione delle prestazioni di scambio termico e nella parziale espulsione della carica pirotecnica. L'analisi tomografica, radiografica e XRD dei campioni ha evidenziato la tendenza dei prodotti di reazione a segregare, formando una matrice fragile e porosa (probabilmente a base di alluminio) in cui sono disperse delle più dense gocce risolidificate (probabilmente a base di ferro). Si è inoltre esteso il software di rientro dell'ESA SCARAB con un modulo dedicato alla rappresentazione degli effetti di una carica interna di termite sul processo di distruzione dei satelliti in fase di rientro. Questo software è stato utilizzato per ricostruire i test in galleria, ottenendo nella maggior parte dei casi una descrizione soddisfacente di questi in termini di ignizione della carica e di calore trasferito al mock-up. Tuttavia, alcuni fenomeni restano ancora da descrivere: tra questi, l'isolamento termico provocato dalla presenza della carica pirotecnica, la combustione intermittente osservata in alcuni casi e l'eiezione parziale di materiale. Infine, la versione estesa di SCARAB e un nuovo codice di rientro object-oriented sviluppato durante la realizzazione di questo lavoro (TRANSIT) sono stati utilizzati per una serie di simulazioni di rientro per studiare gli effetti che una carica interna di termite potrebbe avere derante il rientro di sistemi spaziali dalle forme semplici. Per i casi studio selezionati, una riduzione della massa impattante al suolo si è osservata per efficienze di scambio termico superiori al 40%. Inoltre, un'ottimizzazione tramite l'uso di un algoritmo genetico è stata condotta su TRANSIT. Senza considerare gli effetti indotti dalla frammentazione, i risultati suggeriscono che la migliore strategia consista in un rilascio di entalpia da parte della carica pirotecnica quanto più vicino possibile all'istante in cui il sistema spaziale raggiunge la sua massima temperatura.
New concept for sustainable space operations: Thermite-for-Demise (T4D)
FINAZZI, ALESSANDRO
2024/2025
Abstract
Thermite-for-Demise (T4D) is a novel Design-for-Demise (D4D) concept leveraging the properties of energetic materials to aid spacecraft demise during re-entry. Its objective, and more broadly the one of D4D, is to provide solutions to reach a safe but economically sound end-of-life strategy for space systems operating in Low Earth Orbit. While their decommissioning through de-orbiting is necessary to avoid the proliferation of space debris, people and assets on the ground could be endangered by spacecraft that do not completely ablate during the re-entry phase. Energetic materials, and more specifically thermites, could provide a solution for this. Thermites are mixtures of metals and metal oxides, usually in powder form, which can react exothermically and in a self-sustaining way if a proper energetic stimulus is provided. Their reaction is characterized by a high adiabatic flame temperature and their high energetic density makes them appealing for compact applications. Moreover, several tuning leverages such as formulation, granulometry, and production processes can influence their reactivity and the outcomes of the reaction (e.g., the fraction of gaseous products). While several concepts have been proposed during the last decades on the use of these materials to provide additional enthalpy to a re-entering spacecraft or to control its fragmentation sequence, their potential use for D4D applications is still largely unexplored. In this work, a systematic study on this topic is presented. A simple integration concept, based on the integration of free-flowing thermite in the structural voids of spacecraft components, was selected to investigate the most fundamental aspects of this technology. From thermochemical and safety considerations, a mixture of aluminum and hematite was selected for tests up to an experimental campaign conducted at DLR's high-enthalpy hypersonic wind tunnel L2K. Mechanical activation was used to tune thermite reactivity, and a portfolio of formulations capable of passive ignition in a temperature range from 700 to 1500 K was obtained. Lab-scale tests quantified the heat transfer efficiency from a reaction thermite to its enclosing vessel to 60%. Then, seventeen wind tunnel tests were conducted on simple-shaped steel mock-ups containing thermite to study its impact on the demise process, varying geometry, thermite formulation, filling level, and heat load. Passive ignition was verified in all tests involving thermite, in the same temperature range as observed at the lab-scale experiments. In some cases, the internal thermite charge induced partial demise of the samples. Gas generation was recognized to have a detrimental effect for this integration strategy, leading to significant pressure buildup and to the ejection of part of the energetic material. Tomography, radiography, and XRD analysis revealed the tendency of the thermite products to segregate, resulting in a porous and fragile matrix (probably Al-based) in which solidified droplets (probably Fe-based) are dispersed. ESA's re-entry software SCARAB was extended with a thermite-dedicated model, which was used to rebuild the wind tunnel campaign. This numerical tool successfully described the ignition and effects of the thermite in the majority of cases, even if some phenomena such as the internal insulation due to the thermite presence, intermittent combustion, and partial ejection of reactive material were not included in the model. Then, the extended SCARAB software and a novel object-oriented code developed during this thesis, named TRANSIT, were used to simulate the effects that an internal thermite charge could have on simple-shaped spacecraft components during re-entry. For the selected test cases, the numerical tools predicted a benefit in terms of mass impacting on the ground for heat transfer efficiencies as low as 40%. Moreover, a genetic algorithm optimization conducted using TRANSIT suggests that the best strategy for this kind of application, not considering the effects of fragmentation, is a late and brief enthalpy release from the thermite, occurring as close as possible to the moment in which the spacecraft reaches its maximum temperature during re-entry.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Finazzi.pdf
non accessibile
Descrizione: Thesis
Dimensione
50.08 MB
Formato
Adobe PDF
|
50.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237939