The challenge of decarbonizing heat demand requires a comprehensive feasibility analysis from an energy system perspective. This research studies how the decarbonization of the heat generation in the building sector (residential and tertiary) may impact the national energy system in the Italian case study. The adopted methodology consists of four main steps: (i) estimation of heat demand, (ii) definition of the technological mix enabling the decarbonization, (iii) simulation of hourly consumption profiles, and (iv) analysis of a whole-energy system model. Annual heat demand is distributed at the census cell level, accounting for building characteristics such as aggregation type, construction age, and climatic conditions. The resulting values are input into an optimization framework designed to define the optimal technological mix to achieve the decarbonization of the building sector by 2050, based on total system cost minimization. The framework has a detailed geographical resolution and simulates the penetration of technologies (e.g. heat pumps, district heating etc.) and refurbishment (e.g. envelope insulation) options under various constraints, including resource availability and emission limits. Hourly profiles are generated considering building usage, the external temperature, and the thermal system characteristics. A regression model is applied for on/off technologies, while the bin method is used for continuous one. Finally, the existing NEMeSI model is used to simulate the operation of the national energy system, with a regional detail on the balance of the power system. The results show that achieving the decarbonization target primarily depends on adopting electric heat pumps (standalone and coupled with gas systems), district heating, and building retrofitting; the latter being responsible for half of the cost for the heat sector. Air-to-air heat pumps play a significant role during the transition phase. Spatial analysis highlights that biomass and natural gas boilers are more suitable for cold climates, while air-to-air heat pumps can fully meet demand in hot climates. The additional power load due to electric heat pumps reaches about 32.7 GW though the overall peak is projected to increase only by around 23% in southern Italy and 8% in northern Italy. The increased demand is satisfied mainly through the expansion of PV and wind turbines, especially in southern regions, coupled with battery storage.
La sfida della decarbonizzazione della domanda di calore richiede un'analisi di fattibilità completa da una prospettiva del sistema energetico. Questo studio valuta come la decarbonizzazione del settore edilizio (residenziale e terziario) possa influenzare il sistema energetico nazionale per il caso studio Italiano. La metodologia adottata si articola in quattro fasi principali: (i) stima della domanda di calore, (ii) definizione del mix tecnologico, (iii) simulazione dei profili di consumo orari e (iv) analisi del sistema energetico. La domanda annua di calore viene distribuita a livello di sezione di censimento, considerando le caratteristiche degli edifici, come l'aggregazione, l’epoca e il clima. I valori risultanti vengono inseriti in un modello di ottimizzazione che definisce il mix tecnologico ottimale per la decarbonizzazione del settore civile entro il 2050, minimizzando il costo totale del sistema. Il modello ha un’elevata risoluzione geografica e simula la diffusione delle tecnologie (come pompe di calore, teleriscaldamento, ecc.) e delle opzioni di riqualificazione energetica (come l'isolamento degli edifici) sotto diversi vincoli, tra cui la disponibilità di risorse e i limiti di emissioni. I profili orari sono generati considerando l’uso degli edifici e dei sistemi termici e la temperatura esterna. Per le tecnologie on/off viene applicato un modello di regressione, mentre per quelle a funzionamento continuo si utilizza il metodo dei bin. Infine, il modello esistente NEMeSI viene impiegato per simulare il sistema energetico nazionale, con un dettaglio regionale. I risultati mostrano che il raggiungimento della decarbonizzazione dipende principalmente dall’adozione di pompe di calore elettriche (autonome e accoppiate con sistemi a gas), dal teleriscaldamento e dalla riqualificazione edilizia, quest’ultima rappresentando metà dei costi per il settore del calore. Le pompe di calore aria-aria giocano un ruolo significativo nella fase di transizione. L’analisi spaziale evidenzia che le caldaie a biomassa e a gas naturale sono più adatte ai climi freddi, mentre le pompe di calore aria-aria possono soddisfare completamente la domanda nei climi caldi. Il carico elettrico aggiuntivo dovuto alle pompe di calore elettriche raggiunge circa 32.7 GW, sebbene il picco complessivo sia previsto in aumento solo del 23% nel sud Italia e dell’8% nel nord Italia. L’aumento della domanda viene soddisfatto attraverso l’espansione del fotovoltaico e delle turbine eoliche, soprattutto nelle regioni meridionali, accoppiato con batterie di accumulo.
Modelling the buildings energy need in the national energy system simulation: a detailed spatio-temporal approach
POZZI, MARIANNA
2024/2025
Abstract
The challenge of decarbonizing heat demand requires a comprehensive feasibility analysis from an energy system perspective. This research studies how the decarbonization of the heat generation in the building sector (residential and tertiary) may impact the national energy system in the Italian case study. The adopted methodology consists of four main steps: (i) estimation of heat demand, (ii) definition of the technological mix enabling the decarbonization, (iii) simulation of hourly consumption profiles, and (iv) analysis of a whole-energy system model. Annual heat demand is distributed at the census cell level, accounting for building characteristics such as aggregation type, construction age, and climatic conditions. The resulting values are input into an optimization framework designed to define the optimal technological mix to achieve the decarbonization of the building sector by 2050, based on total system cost minimization. The framework has a detailed geographical resolution and simulates the penetration of technologies (e.g. heat pumps, district heating etc.) and refurbishment (e.g. envelope insulation) options under various constraints, including resource availability and emission limits. Hourly profiles are generated considering building usage, the external temperature, and the thermal system characteristics. A regression model is applied for on/off technologies, while the bin method is used for continuous one. Finally, the existing NEMeSI model is used to simulate the operation of the national energy system, with a regional detail on the balance of the power system. The results show that achieving the decarbonization target primarily depends on adopting electric heat pumps (standalone and coupled with gas systems), district heating, and building retrofitting; the latter being responsible for half of the cost for the heat sector. Air-to-air heat pumps play a significant role during the transition phase. Spatial analysis highlights that biomass and natural gas boilers are more suitable for cold climates, while air-to-air heat pumps can fully meet demand in hot climates. The additional power load due to electric heat pumps reaches about 32.7 GW though the overall peak is projected to increase only by around 23% in southern Italy and 8% in northern Italy. The increased demand is satisfied mainly through the expansion of PV and wind turbines, especially in southern regions, coupled with battery storage.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Pozzi Marianna.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo tesi PhD
Dimensione
38.11 MB
Formato
Adobe PDF
|
38.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/237999