Hydrogen is increasingly recognized as a clean energy carrier, capable of delivering energy through combustion or fuel cells without generating greenhouse gas emissions. However, its widespread adoption presents significant challenges for materials engineers, particularly due to its detrimental effects on the mechanical properties of many structural materials. Among these, steels, widely employed in transport, distribution, storage, and utilization infrastructure, are particularly susceptible to hydrogen embrittlement (HE), a phenomenon that compromises their mechanical performance when exposed to hydrogen-rich environments. This Ph.D. research was conducted within the broader framework of HE quantification in steels, a crucial step toward the safe deployment of hydrogen technologies. The main objective was to investigate alternative electrochemical methods for evaluating the HE susceptibility of carbon and low-alloy steels commonly used in the Oil & Gas sector. These methods are proposed as cost-effective and time-efficient alternatives to in-situ high-pressure hydrogen testing, which, although standardized, are often resource-intensive. To this end, an electrochemical hydrogen charging protocol combined with mechanical testing was developed and applied to six representative carbon and low alloy steels, used for application in valves (4140, F65, LF2) pipelines (two different X60 steels) and tubing/casing (T95). The steels are different in mechanical properties, i.e. yield strength ranging from 300 MPa to 700 MPa, composition (carbon and low alloy steels) and microstructures (ferritic-pearlitic, ferritic acicular, and tempered martensitic). A thorough preliminary characterization of each alloy, including chemical composition, microstructure, and baseline mechanical properties, was performed to establish possible correlations with HE susceptibility. Mechanical degradation due to hydrogen was assessed through fracture toughness and tensile tests on samples electrochemically pre-charged with hydrogen using a 0.5 M H₂SO₄ + 250 g/L As₂O₃ solution. To optimize the hydrogen charging process, the apparent hydrogen diffusion coefficient (DH) was determined using a Devanathan-Stachurski electrochemical double-cell setup. These values were incorporated into finite element method (FEM) simulations to model hydrogen concentration profiles within the specimens during both charging and testing, providing theoretical validation of the experimental approach. Post-fracture analyses were carried out to assess the impact of hydrogen on fracture morphology. The developed electrochemical charging system demonstrated high versatility, enabling the achievement of hydrogen concentrations ranging from 0.1 to 10 wt.ppm by varying the applied cathodic current density (iC). These concentrations are consistent with those expected in steels exposed to high-pressure gaseous hydrogen and mildly sour conditions (internal corrosion in hydrocarbons in presence of H2S). Two current densities were selected to simulate environmental conditions of increasing severity (iC = 0.5 mA/cm² and iC = 5 mA/cm²), representative of hydrogen transport pressures and mildly sour service environments, respectively. Measured diffusion coefficients ranged from 0.59 × 10⁻10 to 3.24 × 10⁻10 m²/s, with lower values generally associated with steels exhibiting higher yield and ultimate tensile strengths, as well as finer bainitic or tempered martensitic microstructures. FEM simulations indicated that equilibrium hydrogen concentration profiles were reached within 72 hours, even in specimens up to 20 mm in thickness. Fracture toughness (KJc) values decreased significantly across all alloys following hydrogen charging, even under milder exposure conditions (0.5 mA/cm²), with reductions ranging from 30% to 40%. Steels with finer quenched and tempered microstructures exhibited the greatest relative reduction. At higher current densities, KJc values further declined, converging across all the alloys in the range of 120–150 MPa√m, irrespective of their initial toughness. The most notable reductions were observed in steels characterized by higher fracture toughness, such as T95 (KJc = 331 MPa√m), X60 TMCP (KJc = 422 MPa√m), and F65 (KJc = 402 MPa√m). Despite the degradation, all alloys retained a degree of ductile behavior, even under the most severe pre-charging conditions. Fractographic analysis confirmed the persistence of mixed brittle–ductile fracture modes. Importantly, the fracture toughness values remained above the 55 MPa√m threshold recommended by the ASME B31.12 standard for hydrogen service, indicating that, while hydrogen embrittlement significantly compromises mechanical performance, the studied steels may still meet minimum safety requirements for hydrogen-related applications.
L’idrogeno è sempre più riconosciuto come un vettore energetico pulito, capace di fornire energia tramite combustione o celle a combustibile senza generare emissioni di gas serra. Tuttavia, la sua diffusione su larga scala presenta notevoli sfide per gli ingegneri dei materiali, in particolare a causa degli effetti negativi che l’idrogeno ha sulle proprietà meccaniche di molti materiali strutturali. Tra questi, gli acciai, ampiamente impiegati nelle infrastrutture di trasporto, distribuzione, stoccaggio e utilizzo, sono particolarmente suscettibili all’infragilimento da idrogeno (HE). Questa ricerca di dottorato è stata condotta nel contesto della quantificazione dell’HE degli acciai da condotta, un passaggio cruciale per l’impiego sicuro dell’idrogeno come vettore energetico. L’obiettivo principale è stato quello di indagare metodi elettrochimici alternativi per valutare la suscettibilità alla HE di acciai al carbonio e basso legati comunemente usati nel settore Oil & Gas. Questi metodi sono proposti come alternative economiche e rapide ai test in-situ in idrogeno ad alta pressione, che, sebbene standardizzati, risultano spesso onerosi in termini di risorse. A tal fine, è stato sviluppato un protocollo di carica elettrochimica di idrogeno combinato con prove meccaniche, applicato a sei acciai al carbonio e basso legati, utilizzati in applicazioni per valvole (4140, F65, LF2), metanodotti (due acciai X60 diversi) e oleodotti (T95). Gli acciai differiscono per proprietà meccaniche (resistenza allo snervamento da 300 MPa a 700 MPa), composizione (acciai al carbonio e basso legati) e microstrutture (ferritico-perlitico, ferritico aciculare e martensitico rinvenuto). È stata eseguita un’accurata caratterizzazione preliminare di ciascuna lega, inclusa la composizione chimica, la microstruttura e le proprietà meccaniche di base, per stabilire successivamente possibili correlazioni con la suscettibilità all’HE. Il degrado meccanico dovuto all’idrogeno è stato valutato mediante prove di tenacità alla frattura e trazione su campioni precaricati elettrochimicamente con idrogeno utilizzando una soluzione di H₂SO₄ 0,5 M + 250 g/L As₂O₃. Per ottimizzare il processo di carica, è stato determinato il coefficiente apparente di diffusione dell’idrogeno (DH) mediante una cella elettrochimica di Devanathan-Stachurski. Questi valori sono stati integrati in simulazioni FEM per modellare i profili di concentrazione dell’idrogeno nei campioni durante la carica e le prove, fornendo una validazione teorica dell’approccio sperimentale. Sono state condotte analisi post-frattura per valutare l’impatto dell’idrogeno sulla morfologia di frattura. Il sistema di carica elettrochimica sviluppato ha dimostrato grande versatilità, permettendo di ottenere concentrazioni di idrogeno comprese tra 0,1 e 10 wt.ppm variando la densità di corrente catodica applicata (iC). Queste concentrazioni sono coerenti con quelle attese negli acciai esposti a idrogeno gassoso ad alta pressione e a condizioni debolmente acide (in presenza di H₂S). Sono state quindi selezionate due densità di corrente per simulare condizioni ambientali di crescente severità (iC = 0,5 mA/cm² e iC = 5 mA/cm²), rappresentative rispettivamente delle pressioni di trasporto dell’idrogeno e di ambienti di servizio debolmente acidi. I DH misurati variano da 0,59 × 10⁻¹⁰ a 3,24 × 10⁻¹⁰ m²/s, con valori inferiori generalmente associati ad acciai con maggiore resistenza allo snervamento, nonché con microstrutture bainitiche fini o martensitiche rinvenute. Le simulazioni FEM hanno confermato la possibilità di ottenere profili di concentrazione di idrogeno omogenei entro 72 ore di carica, anche in campioni di spessore fino a 20 mm. I valori di tenacità alla frattura (KJc) sono diminuiti significativamente in tutte le leghe studiate nei provini precaricati con idrogeno, anche in condizioni di esposizione più lievi (0,5 mA/cm²), con riduzioni comprese tra il 30% e il 40%. Gli acciai con microstrutture più fini temprate e rinvenute hanno mostrato la maggiore riduzione relativa. A densità di corrente più elevate, i valori di KJc sono ulteriormente diminuiti, convergendo per tutte le leghe nell’intervallo 120–150 MPa√m, indipendentemente dalla tenacità iniziale. Le riduzioni più rilevanti sono state osservate in acciai con alta tenacità alla frattura, come T95 (KJc = 331 MPa√m), X60 TMCP (KJc = 422 MPa√m) e F65 (KJc = 402 MPa√m). Nonostante il degrado delle proprietà meccaniche, tutte le leghe hanno mantenuto un certo grado di comportamento duttile, anche nelle condizioni di precarica più severe. L’analisi frattografica ha confermato la persistenza di modalità di frattura miste fragile–duttile. È importante sottolineare che i valori di tenacità alla frattura misurati sono rimasti al di sopra della soglia di 55 MPa√m raccomandata dalla norma ASME B31.12 per servisio in idrogeno, indicando che, sebbene l’HE comprometta significativamente le prestazioni meccaniche, gli acciai studiati potrebbero comunque soddisfare i requisiti minimi di sicurezza per applicazioni legate all’idrogeno.
Electrochemical charging and hydrogen embrittlement of carbon and low alloy steels for oil and gas applications
Paterlini, Luca
2024/2025
Abstract
Hydrogen is increasingly recognized as a clean energy carrier, capable of delivering energy through combustion or fuel cells without generating greenhouse gas emissions. However, its widespread adoption presents significant challenges for materials engineers, particularly due to its detrimental effects on the mechanical properties of many structural materials. Among these, steels, widely employed in transport, distribution, storage, and utilization infrastructure, are particularly susceptible to hydrogen embrittlement (HE), a phenomenon that compromises their mechanical performance when exposed to hydrogen-rich environments. This Ph.D. research was conducted within the broader framework of HE quantification in steels, a crucial step toward the safe deployment of hydrogen technologies. The main objective was to investigate alternative electrochemical methods for evaluating the HE susceptibility of carbon and low-alloy steels commonly used in the Oil & Gas sector. These methods are proposed as cost-effective and time-efficient alternatives to in-situ high-pressure hydrogen testing, which, although standardized, are often resource-intensive. To this end, an electrochemical hydrogen charging protocol combined with mechanical testing was developed and applied to six representative carbon and low alloy steels, used for application in valves (4140, F65, LF2) pipelines (two different X60 steels) and tubing/casing (T95). The steels are different in mechanical properties, i.e. yield strength ranging from 300 MPa to 700 MPa, composition (carbon and low alloy steels) and microstructures (ferritic-pearlitic, ferritic acicular, and tempered martensitic). A thorough preliminary characterization of each alloy, including chemical composition, microstructure, and baseline mechanical properties, was performed to establish possible correlations with HE susceptibility. Mechanical degradation due to hydrogen was assessed through fracture toughness and tensile tests on samples electrochemically pre-charged with hydrogen using a 0.5 M H₂SO₄ + 250 g/L As₂O₃ solution. To optimize the hydrogen charging process, the apparent hydrogen diffusion coefficient (DH) was determined using a Devanathan-Stachurski electrochemical double-cell setup. These values were incorporated into finite element method (FEM) simulations to model hydrogen concentration profiles within the specimens during both charging and testing, providing theoretical validation of the experimental approach. Post-fracture analyses were carried out to assess the impact of hydrogen on fracture morphology. The developed electrochemical charging system demonstrated high versatility, enabling the achievement of hydrogen concentrations ranging from 0.1 to 10 wt.ppm by varying the applied cathodic current density (iC). These concentrations are consistent with those expected in steels exposed to high-pressure gaseous hydrogen and mildly sour conditions (internal corrosion in hydrocarbons in presence of H2S). Two current densities were selected to simulate environmental conditions of increasing severity (iC = 0.5 mA/cm² and iC = 5 mA/cm²), representative of hydrogen transport pressures and mildly sour service environments, respectively. Measured diffusion coefficients ranged from 0.59 × 10⁻10 to 3.24 × 10⁻10 m²/s, with lower values generally associated with steels exhibiting higher yield and ultimate tensile strengths, as well as finer bainitic or tempered martensitic microstructures. FEM simulations indicated that equilibrium hydrogen concentration profiles were reached within 72 hours, even in specimens up to 20 mm in thickness. Fracture toughness (KJc) values decreased significantly across all alloys following hydrogen charging, even under milder exposure conditions (0.5 mA/cm²), with reductions ranging from 30% to 40%. Steels with finer quenched and tempered microstructures exhibited the greatest relative reduction. At higher current densities, KJc values further declined, converging across all the alloys in the range of 120–150 MPa√m, irrespective of their initial toughness. The most notable reductions were observed in steels characterized by higher fracture toughness, such as T95 (KJc = 331 MPa√m), X60 TMCP (KJc = 422 MPa√m), and F65 (KJc = 402 MPa√m). Despite the degradation, all alloys retained a degree of ductile behavior, even under the most severe pre-charging conditions. Fractographic analysis confirmed the persistence of mixed brittle–ductile fracture modes. Importantly, the fracture toughness values remained above the 55 MPa√m threshold recommended by the ASME B31.12 standard for hydrogen service, indicating that, while hydrogen embrittlement significantly compromises mechanical performance, the studied steels may still meet minimum safety requirements for hydrogen-related applications.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Paterlini_Tesi_Ph.D..pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
22.87 MB
Formato
Adobe PDF
|
22.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238017