Among the main emitters of greenhouse gases in the chemical industry, several base-chemical processes (e.g., ammonia and methanol synthesis) stand out for their high hydrogen consumption. The present doctoral dissertation examines the opportunity of replacing such “grey” hydrogen (as it is typically synthesized from hydrocarbons, e.g., natural gas and coal) with “green” hydrogen (i.e. produced via water electrolysis powered by renewable electricity). Nevertheless, major operational issues due to this approach arise from the need to reconcile non-dispatchable renewable energy sources (which inevitably affect the electrolyzer and, therefore, the production of green hydrogen) with the low flexibility of chemical plants (traditionally designed to operate in stationary conditions). Specifically, this thesis introduces new methodologies for the design of (i) systems to produce green hydrogen (i.e. aimed at sizing the electrolyzer and its renewable power plant) and (ii) systems allowing the inherent discontinuities of renewable sources to meet the operational requirements of the downstream chemical plant through a material (i.e. tanks) or electrical (i.e. batteries) storage. Consequently, such tools have been applied to carry out feasibility studies on ammonia plants wherein the fossil-based hydrogen input is partially (“hybrid-green ammonia”) or totally (“green ammonia”) replaced with green hydrogen.
Tra i principali responsabili di emissioni di gas climalteranti nell’industria chimica, vi sono diversi processi della chimica di base (e.g., sintesi dell’ammoniaca o del metanolo) che si distinguono per l’elevato consumo di idrogeno. La presente tesi di dottorato si concentra sulla sostituzione di tale idrogeno “grigio” (poiché tipicamente sintetizzato da idrocarburi: e.g., gas naturale o carbone) con idrogeno “verde” (i.e. prodotto tramite elettrolisi dell’acqua con elettricità rinnovabile). Nondimeno, la principale complessità operativa introdotta da questo approccio consiste nella necessità di conciliare la non-programmabilità delle fonti energetiche rinnovabili (che si ripercuote inevitabilmente sull’elettrolizzatore e, conseguentemente, sulla produzione di idrogeno verde) con la scarsa flessibilità degli impianti chimici (tradizionalmente concepiti per essere operati in condizioni stazionarie). Nello specifico, in questo lavoro vengono introdotte delle nuove metodologie per la progettazione di (i) sistemi per la produzione di idrogeno verde (i.e. volti a dimensionare l’elettrolizzatore ed il parco rinnovabile necessario ad alimentarlo) e (ii) sistemi che consentano di adeguare l’intrinseca discontinuità delle fonti rinnovabili ai requisiti operativi degli impianti chimici a valle tramite accumulo materiale (i.e. serbatoi) e/o elettrico (i.e. batterie). Dunque, tali strumenti sono stati applicati per condurre studi di fattibilità su impianti per la produzione di ammoniaca il cui fabbisogno di idrogeno fossile risulta parzialmente (“hybrid-green ammonia”) o totalmente (“green ammonia”) rimpiazzato con idrogeno verde.
Towards the green production of base chemicals
Isella, Andrea
2024/2025
Abstract
Among the main emitters of greenhouse gases in the chemical industry, several base-chemical processes (e.g., ammonia and methanol synthesis) stand out for their high hydrogen consumption. The present doctoral dissertation examines the opportunity of replacing such “grey” hydrogen (as it is typically synthesized from hydrocarbons, e.g., natural gas and coal) with “green” hydrogen (i.e. produced via water electrolysis powered by renewable electricity). Nevertheless, major operational issues due to this approach arise from the need to reconcile non-dispatchable renewable energy sources (which inevitably affect the electrolyzer and, therefore, the production of green hydrogen) with the low flexibility of chemical plants (traditionally designed to operate in stationary conditions). Specifically, this thesis introduces new methodologies for the design of (i) systems to produce green hydrogen (i.e. aimed at sizing the electrolyzer and its renewable power plant) and (ii) systems allowing the inherent discontinuities of renewable sources to meet the operational requirements of the downstream chemical plant through a material (i.e. tanks) or electrical (i.e. batteries) storage. Consequently, such tools have been applied to carry out feasibility studies on ammonia plants wherein the fossil-based hydrogen input is partially (“hybrid-green ammonia”) or totally (“green ammonia”) replaced with green hydrogen.File | Dimensione | Formato | |
---|---|---|---|
ISELLA PhD Thesis.pdf
accessibile in internet per tutti
Descrizione: Andrea_Isella-PhD_Thesis
Dimensione
7.74 MB
Formato
Adobe PDF
|
7.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238037