The development and application of lightweight materials and designs have consistently been central to innovation and research efforts. The demand for lightweight solutions is rapidly increasing across a wide range of industries, particularly in the automotive sector, due to increasingly stringent requirements for improved fuel efficiency, reduced emissions, and enhanced range in electric vehicles. Consequently, lightweight design has progressively become a cornerstone of automotive engineering. Lightweight steels represent an innovative class of steel, characterized by their low density, exceptional mechanical properties, and significant hardening potential, offering a novel approach to traditional weight reduction solutions. The most studied alloying system is Fe-Mn-Al-C, which provides high mechanical properties (yield strength up to 800 MPa and elongation at fracture to 55%) and low density (13% lower than conventional stainless steel). The objective of this research is to characterize promising alloys more thoroughly to achieve technological properties — specifically formability and weldability — suitable for industrial implementation. The ultimate goal is to utilize the acquired knowledge to produce a rollover protective structure using a selected lightweight alloy. Various research pathways were investigated. An initial study on duplex lightweight steels revealed that, despite their desirable mechanical properties, these steels experience rapid kinetic transformations and extensive microstructural changes upon aging. Focusing on austenitic steels, considered of greater interest, and within the framework of the DELIGHTED project, two alloys — a medium Mn alloy and a high Mn alloy — were studied in detail. Initial microstructural analyses indicated a stable austenitic structure with limited κ-carbide evolution. However, the medium Mn alloy exhibited excessive Mn banding, resulting in a microstructure that deviated from the desired state following solution annealing treatments. Despite these differences, the formability of the alloys was evaluated, demonstrating good anisotropy and promising texture composition. Forming limit diagrams for the high Mn alloy indicated superior performance compared to other advanced high-strength steels. Finally, the weldability of the alloys was investigated. The alloys responded differently to arc welding polarity; the medium Mn alloy performed better with AC application, while the high Mn alloy exhibited high-quality welds with DC application. Given the significant findings and favorable results, particularly with the high Mn alloy, this steel was selected for the manufacture of a mini-tractor cabin rollover protective structure. The structure underwent full-scale crash testing and withstood substantial loads despite its low weight. Through computational and simulation comparisons, it was demonstrated that employing lightweight steels could achieve a lighter and safer structure.
Gli acciai leggeri rappresentano una classe innovativa di acciai, caratterizzati da bassa densità, proprietà meccaniche eccezionali e un significativo potenziale di indurimento, offrendo un approccio nuovo alle soluzioni tradizionali di riduzione del peso. Il sistema di leghe più studiato è Fe-Mn-Al-C, che offre elevate proprietà meccaniche (resistenza allo snervamento fino a 800 MPa e allungamento a rottura fino al 55%) e una bassa densità (13% inferiore rispetto ad acciaio inossidabile convenzionale). L’obiettivo di questa ricerca è caratterizzare più a fondo leghe promettenti per ottenere proprietà tecnologiche - specificamente formabilità e saldabilità – adatte all’implementazione industriale. L’obiettivo finale è utilizzare le conoscenze acquisite per produrre una struttura protettiva anti-ribaltamento utilizzando una lega leggera selezionata. Sono stati investigati vari percorsi di ricerca. Uno studio iniziale sugli acciai duplex leggeri ha rivelato che, nonostante le loro proprietà meccaniche desiderabili, questi acciai subiscono rapide trasformazioni e ampie variazioni microstrutturali durante l’invecchiamento. Concentrandosi sugli acciai austenitici, considerati di maggiore interesse, e nell’ambito del progetto DELIGHTED, sono state studiate in dettaglio due leghe: una lega a medio contenuto di Mn e una ad alto contenuto di Mn. Le analisi microstrutturali iniziali hanno indicato una struttura austenitica stabile con una limitata evoluzione dei carburi κ. Tuttavia, la lega a medio contenuto di Mn ha mostrato un’eccessiva segregazione di Mn, portando a una microstruttura diversa da quella desiderata dopo trattamenti di solubilizzazione. Nonostante queste differenze, è stata valutata la formabilità delle leghe, dimostrando una buona anisotropia e una composizione di texture e fibre promettente. I diagrammi di limite di formatura per la lega ad alto contenuto di Mn hanno indicato prestazioni superiori rispetto ad altri acciai avanzati ad alta resistenza. Infine, è stata studiata la saldabilità delle leghe. Le leghe hanno risposto diversamente alla polarità della saldatura ad arco; la lega a medio contenuto di Mn ha performato meglio con l’applicazione in corrente alternata (AC), mentre la lega ad alto contenuto di Mn ha mostrato saldature di alta qualità con l’uso di corrente continua (DC). Dato il significato delle scoperte e i risultati favorevoli, in particolare con la lega ad alto contenuto di Mn, quest’ultimo acciaio è stato scelto per la fabbricazione di una struttura protettiva anti-ribaltamento per una cabina di mini trattore. La struttura è stata sottoposta a test di crash in scala reale e ha resistito a carichi significativi nonostante il suo peso ridotto. Attraverso confronti computazionali e simulazioni, è stato dimostrato che l’uso di acciai leggeri può portare a una struttura più leggera e sicura.
Lightweight steel characterization
VILLA, GIACOMO
2024/2025
Abstract
The development and application of lightweight materials and designs have consistently been central to innovation and research efforts. The demand for lightweight solutions is rapidly increasing across a wide range of industries, particularly in the automotive sector, due to increasingly stringent requirements for improved fuel efficiency, reduced emissions, and enhanced range in electric vehicles. Consequently, lightweight design has progressively become a cornerstone of automotive engineering. Lightweight steels represent an innovative class of steel, characterized by their low density, exceptional mechanical properties, and significant hardening potential, offering a novel approach to traditional weight reduction solutions. The most studied alloying system is Fe-Mn-Al-C, which provides high mechanical properties (yield strength up to 800 MPa and elongation at fracture to 55%) and low density (13% lower than conventional stainless steel). The objective of this research is to characterize promising alloys more thoroughly to achieve technological properties — specifically formability and weldability — suitable for industrial implementation. The ultimate goal is to utilize the acquired knowledge to produce a rollover protective structure using a selected lightweight alloy. Various research pathways were investigated. An initial study on duplex lightweight steels revealed that, despite their desirable mechanical properties, these steels experience rapid kinetic transformations and extensive microstructural changes upon aging. Focusing on austenitic steels, considered of greater interest, and within the framework of the DELIGHTED project, two alloys — a medium Mn alloy and a high Mn alloy — were studied in detail. Initial microstructural analyses indicated a stable austenitic structure with limited κ-carbide evolution. However, the medium Mn alloy exhibited excessive Mn banding, resulting in a microstructure that deviated from the desired state following solution annealing treatments. Despite these differences, the formability of the alloys was evaluated, demonstrating good anisotropy and promising texture composition. Forming limit diagrams for the high Mn alloy indicated superior performance compared to other advanced high-strength steels. Finally, the weldability of the alloys was investigated. The alloys responded differently to arc welding polarity; the medium Mn alloy performed better with AC application, while the high Mn alloy exhibited high-quality welds with DC application. Given the significant findings and favorable results, particularly with the high Mn alloy, this steel was selected for the manufacture of a mini-tractor cabin rollover protective structure. The structure underwent full-scale crash testing and withstood substantial loads despite its low weight. Through computational and simulation comparisons, it was demonstrated that employing lightweight steels could achieve a lighter and safer structure.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_GV.pdf
non accessibile
Dimensione
117.4 MB
Formato
Adobe PDF
|
117.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238177