Environmental preservation and remediation are key challenges the scientific community is called to address. This PhD research focused on the development of cellulose-based materials, guided by principles of sustainability and eco-design. Cellulose, a naturally abundant polysaccharide composed of alternating amorphous and crystalline regions, was used to produce cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) through various chemical and mechanical methods. CNF were obtained using TEMPO-mediated oxidation and enzymatic pre-treatment, followed by mechanical disintegration. CNC were synthesized via sulfuric acid hydrolysis and an innovative deep eutectic solvent process. To assess the environmental sustainability of CNC production, the ESCAPE method was applied. This analysis demonstrated that the deep eutectic solvent route had a lower environmental impact compared to sulfuric acid treatment. Process optimizations led to significant reductions in energy consumption and CO₂ emissions. Additionally, the eco-toxicity of CNC was evaluated using Mytilus galloprovincialis, showing no genotoxic effects but indicating some cellular membrane instability at higher concentrations. Following sustainability and safety assessments, applications of CNF and CNC were explored. CNF were used to enhance the grease resistance of paper through the development of a coating formulation. Moreover, CNF combined with silver nanoparticles formed composites capable of selectively removing cadmium ions from water, facilitated by interactions between carboxyl groups and the metal ions. The carboxylic functionality of nanocellulose was further exploited to produce cellulose nanosponges (CNS), porous materials able to adsorb or release various contaminants or fertilizers. CNS were used as supports for palladium in aqueous Suzuki–Miyaura cross-coupling reactions, achieving high yields and selectivity. They were also functionalized with cobalt for the cycloaddition of CO₂ to epoxides, performed under mild, solvent-free conditions with good conversions and limited by-product formation. Lastly, CNS were modified to enable the controlled release of urea fertilizers. Using amine-functionalized polyethylene glycol crosslinkers, release studies demonstrated a sustained release profile both in water and in soil simulants. The results highlighted the potential of cellulose-based nanomaterials for applications in catalysis, environmental remediation, and agriculture, while adhering to principles of green chemistry and material safety.
La preservazione e la bonifica ambientale rappresentano sfide fondamentali che la comunità scientifica è chiamata ad affrontare. Questa ricerca di dottorato si è concentrata sullo sviluppo di materiali a base di cellulosa, seguendo i principi della sostenibilità e dell’eco-design. La cellulosa, un polisaccaride abbondantemente presente in natura, composto da regioni amorfe e cristalline alternate, è stata utilizzata per produrre nanofibre (CNF) e nanocristalli (CNC) di cellulosa tramite diversi trattamenti chimici e meccanici. Le CNF sono state ottenute mediante ossidazione mediata da TEMPO e pretrattamento enzimatico, seguiti da disintegrazione meccanica. I CNC sono stati sintetizzati sia tramite idrolisi con acido solforico sia mediante un innovativo trattamento con solventi eutettici profondi. Per valutare la sostenibilità ambientale della produzione di CNC è stato applicato il metodo ESCAPE. Tale analisi ha dimostrato che il trattamento con solventi eutettici profondi presenta un impatto ambientale inferiore rispetto a quello con acido solforico. L’ottimizzazione dei processi ha comportato una significativa riduzione dei consumi energetici e delle emissioni di CO₂. Inoltre, è stata condotta una valutazione dell’ecotossicità dei CNC utilizzando Mytilus galloprovincialis, che ha evidenziato l’assenza di effetti genotossici, ma una certa instabilità della membrana lisosomiale alle concentrazioni più elevate. Dopo la valutazione della sostenibilità e della sicurezza, sono state investigate diverse applicazioni delle CNF e dei CNC. Le CNF sono state impiegate per migliorare la resistenza al grasso della carta, attraverso lo sviluppo di una formulazione di rivestimento. Inoltre, le CNF combinate con nanoparticelle d’argento hanno permesso di ottenere compositi in grado di rimuovere selettivamente ioni di cadmio dall’acqua, grazie all’interazione tra i gruppi carbossilici e gli ioni metallici. La funzionalità carbossilica della nanocellulosa è stata ulteriormente sfruttata per produrre nanospugne di cellulosa (CNS), materiali porosi capaci di adsorbire o rilasciare vari contaminanti o fertilizzznti. Le CNS sono state utilizzate come supporti per il palladio in reazioni di accoppiamento di Suzuki–Miyaura in acqua, con elevate rese e selettività. Sono state inoltre funzionalizzate con cobalto per la reazione di cicloadizione della CO₂ agli epossidi, condotta in condizioni miti e senza solventi, con buone conversioni e formazione limitata di sottoprodotti. Infine, le CNS sono state modificate per consentire il rilascio controllato di fertilizzanti a base di urea. Utilizzando agenti reticolanti a base di polietilenglicole funzionalizzato con gruppi amminici, gli studi di rilascio hanno mostrato un profilo prolungato sia in acqua sia in simulanti del suolo. I risultati hanno evidenziato il potenziale dei materiali nanostrutturati a base di cellulosa per applicazioni in catalisi, bonifica ambientale e agricoltura, nel rispetto dei principi della chimica verde e della sicurezza dei materiali.
Sustainable production and modification of nanocellulose from renewable sources for the design of bio-based products and materials
Nicastro, Gloria
2024/2025
Abstract
Environmental preservation and remediation are key challenges the scientific community is called to address. This PhD research focused on the development of cellulose-based materials, guided by principles of sustainability and eco-design. Cellulose, a naturally abundant polysaccharide composed of alternating amorphous and crystalline regions, was used to produce cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) through various chemical and mechanical methods. CNF were obtained using TEMPO-mediated oxidation and enzymatic pre-treatment, followed by mechanical disintegration. CNC were synthesized via sulfuric acid hydrolysis and an innovative deep eutectic solvent process. To assess the environmental sustainability of CNC production, the ESCAPE method was applied. This analysis demonstrated that the deep eutectic solvent route had a lower environmental impact compared to sulfuric acid treatment. Process optimizations led to significant reductions in energy consumption and CO₂ emissions. Additionally, the eco-toxicity of CNC was evaluated using Mytilus galloprovincialis, showing no genotoxic effects but indicating some cellular membrane instability at higher concentrations. Following sustainability and safety assessments, applications of CNF and CNC were explored. CNF were used to enhance the grease resistance of paper through the development of a coating formulation. Moreover, CNF combined with silver nanoparticles formed composites capable of selectively removing cadmium ions from water, facilitated by interactions between carboxyl groups and the metal ions. The carboxylic functionality of nanocellulose was further exploited to produce cellulose nanosponges (CNS), porous materials able to adsorb or release various contaminants or fertilizers. CNS were used as supports for palladium in aqueous Suzuki–Miyaura cross-coupling reactions, achieving high yields and selectivity. They were also functionalized with cobalt for the cycloaddition of CO₂ to epoxides, performed under mild, solvent-free conditions with good conversions and limited by-product formation. Lastly, CNS were modified to enable the controlled release of urea fertilizers. Using amine-functionalized polyethylene glycol crosslinkers, release studies demonstrated a sustained release profile both in water and in soil simulants. The results highlighted the potential of cellulose-based nanomaterials for applications in catalysis, environmental remediation, and agriculture, while adhering to principles of green chemistry and material safety.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_Thesis_Nicastro_Gloria.pdf
accessibile in internet per tutti a partire dal 12/05/2028
Dimensione
7.98 MB
Formato
Adobe PDF
|
7.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238397