This research work addresses the clinical challenge associated with the development of an innovative magnesium-based drug delivery device aimed at treating age-related macular degeneration (AMD), a degenerative disease affecting the macula and one of the leading causes of blindness in industrialized countries. The current therapeutic approach, based on frequent intravitreal injections, presents significant limitations in terms of patient adherence. The proposed device seeks to provide a more effective and less invasive solution. The first part of the thesis focuses on the technological development of the device. It explores the process of deep micro-drilling of magnesium, identifying optimal cutting parameters to enhance hole quality and process stability. An innovative non-contact optical centering system is also introduced, which significantly reduced hole eccentricity and improved process repeatability during device prototyping. In parallel, an alternative to micro-drilling is investigated through cold micro-drawing, which demonstrated advantages in terms of surface finish and mechanical properties of the microcomponents, although it posed challenges such as wall thickening and material strain hardening. The second part analyzes the in vitro behavior of the device in the ophthalmic environment. An innovative test bench is presented, designed to simulate the physiological conditions of the human eye at a 4:1 scale, enabling the study of magnesium corrosion mechanisms during prolonged immersion. The results show non-uniform corrosion with significant surface damage, suggesting the use of high-purity magnesium and surface treatments to improve corrosion resistance. The thesis concludes with a discussion of the main results achieved and the current limitations, proposing future development directions.
Questo lavoro di ricerca affronta la sfida clinica legata allo sviluppo di un innovativo dispositivo di rilascio di farmaco a base di magnesio, finalizzato al trattamento della maculopatia legata all’età, una patologia degenerativa che colpisce la macula ed è tra le principali cause di cecità nei paesi industrializzati. L’attuale approccio terapeutico, basato su frequenti iniezioni intravitreali, presenta significativi limiti in termini di aderenza al trattamento. Il dispositivo proposto mira a offrire una soluzione più efficace e meno invasiva. La prima parte della tesi si concentra sullo sviluppo tecnologico del dispositivo. Viene esplorato il processo di microforatura profonda del magnesio, identificando i parametri di taglio ottimali per migliorare la qualità dei fori e la stabilità del processo. Viene inoltre introdotto un innovativo sistema ottico di centratura non a contatto, che ha ridotto significativamente l’eccentricità dei fori e migliorato la ripetibilità del processo durante la prototipazione del device. Parallelamente, viene studiata un’alternativa alla microforatura mediante il processo di microtrafilatura a freddo, che ha mostrato vantaggi in termini di finitura superficiale e proprietà meccaniche dei microcomponenti, affrontando però sfide come l’ispessimento delle pareti e incrudimento del materiale. La seconda parte analizza il comportamento in vitro del dispositivo nell’ambiente oftalmico. Viene presentato un banco di prova innovativo, progettato per simulare le condizioni fisiologiche dell’occhio umano in scala 4:1, che ha permesso di studiare i meccanismi di corrosione del magnesio durante immersioni prolungate. I risultati evidenziano una corrosione non uniforme con danni superficiali significativi, suggerendo l’uso di magnesio ad alta purezza e trattamenti superficiali per migliorarne la resistenza. La tesi si conclude con una discussione sui principali risultati ottenuti e sulle attuali limitazioni proponendo sviluppi futuri.
Miniaturization of Magnesium-based intraocular devices for drug delivery
Pizzi, Margherita
2024/2025
Abstract
This research work addresses the clinical challenge associated with the development of an innovative magnesium-based drug delivery device aimed at treating age-related macular degeneration (AMD), a degenerative disease affecting the macula and one of the leading causes of blindness in industrialized countries. The current therapeutic approach, based on frequent intravitreal injections, presents significant limitations in terms of patient adherence. The proposed device seeks to provide a more effective and less invasive solution. The first part of the thesis focuses on the technological development of the device. It explores the process of deep micro-drilling of magnesium, identifying optimal cutting parameters to enhance hole quality and process stability. An innovative non-contact optical centering system is also introduced, which significantly reduced hole eccentricity and improved process repeatability during device prototyping. In parallel, an alternative to micro-drilling is investigated through cold micro-drawing, which demonstrated advantages in terms of surface finish and mechanical properties of the microcomponents, although it posed challenges such as wall thickening and material strain hardening. The second part analyzes the in vitro behavior of the device in the ophthalmic environment. An innovative test bench is presented, designed to simulate the physiological conditions of the human eye at a 4:1 scale, enabling the study of magnesium corrosion mechanisms during prolonged immersion. The results show non-uniform corrosion with significant surface damage, suggesting the use of high-purity magnesium and surface treatments to improve corrosion resistance. The thesis concludes with a discussion of the main results achieved and the current limitations, proposing future development directions.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD Thesis Pizzi_Final.pdf
non accessibile
Dimensione
20.68 MB
Formato
Adobe PDF
|
20.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238557