Compared to nuclear fission, nuclear fusion entails unique operational and maintenance challenges due to the extreme and unique operating conditions. The experience with the Joint European Torus (JET) has shown how current and future fusion facilities must consider remote handling maintenance from the early design stage, due to the high radiation levels that prevent direct human intervention. For example, during maintenance, the shutdown dose rate of the International Fusion Materials Irradiation Facility – Demo Oriented NEutron Source (IFMIF-DONES) Target Assembly is higher than 1 Sv/h, while the maximum allowable total dose to the operators is 20 mSv/y. The combination of remote handling and the extreme and unique environmental conditions drastically complicates the system design from a technological point of view, often requiring custom and one-of-a-kind solutions. Furthermore, the need for remote handling also complicates the design process as it introduces other, and in some cases unique, requirements and constraints, such as the need for alignment guides. Prolonged maintenance times can significantly impact operations and plant availability; therefore, from the very first stages, all proposed designs should be tested and optimised for compatibility with remote handling systems to simplify future maintenance tasks during operation. Given that the diverse fusion components are in different design stages, developing an adaptable and flexible framework to test and optimise the set of remote maintenance operations and the remote handling system, regardless of the component technological readiness level, would drastically improve and streamline the design process of fusion facilities. Currently, however, such a framework for fusion facilities is lacking: this thesis aims at filling this gap by defining an integrated methodology for developing, modelling, simulating, and experimentally verifying the overall remote handling maintenance for fusion plants and their components. In particular, this work adopted the IFMIF-DONES accelerator facility remote handling maintenance for the Test Cell components as the key test case, to which it follows the extension to the European DEMOnstration power plant (DEMO) remote handling. In line with the above statements, these two facilities are currently in two quite different design phases, with IFMIF-DONES under construction and DEMO still in preliminary design: this will require a framework able to cope with the distinct requirements of the two facilities. More in detail, this work starts by analysing the remote handling maintenance requirements of the heart of the IFMIF-DONES facility, the Test Cell. First, remote handling maintenance requirements, the components, and the Test Cell remote-handling system are analysed in detail, assessing the state of the art to develop an integrated remote handling test campaign on the Test Cell components. Then, as the first step in the proposed integrated framework, the maintenance procedures for the components of the Test Cell are developed using flow charts. These procedures are then applied to the experimental analysis of two IFMIF-DONES physical systems carried out in this research: i) The Electrical Connectors Bridge, which connects the High Flux Test Module to the IFMIF-DONES control system. ii) The One-Point Mechanism - Fast Disconnecting System, which connects the Target Assembly to the accelerator line. As part of the proposed methodology, the Functional Breakdown Structure and the components/basic function matrix are used to identify potential failure scenarios in the remote handling procedure and then tested in the Divertor Refurbishment Platform (DRP) lab of ENEA Brasimone. The remote handling procedures of the Electrical Connectors bridge were then translated into models and simulated using Petri nets; the effectiveness of this approach was then validated through experimental activities. This validation process, which is not possible on design-only components such as DEMO, highlights the reliability and effectiveness of the proposed approach, which indeed was able to identify the margins for improvement and optimisation in the bridge design and the maintenance procedure. Finally, to assess the adaptability of the Petri nets approach and, more generally, of the proposed framework, to other components and fusion facilities, the work is extended to DEMO for developing and testing the remote handling system during the early design stages. This analysis highlighted that the inspection steps are indeed the most critical and that the choice of the type of inspection system has the highest influence on the duration of the maintenance. From an engineering perspective, the results of this thesis work will help progress the design of the DEMO remote handling system, the DEMO facility, the IFMIF-DONES maintenance procedures, and the IFMIF-DONES components. Thanks to the adaptability and generality of the Petri nets and of the proposed framework, the methodology presented in this thesis work can be used in future stages of the development of DEMO and IFMIF-DONES, as well as for other fusion facilities for which remote handling maintenance is a priority. Additionally, Petri nets can be used during operation to monitor the maintenance process by being directly wired to the physical facility. Finally, the proposed methodology can be extended for the maintenance of even different facilities, such as conventional power plants and Generation-IV fission reactors, which also present some unique challenges from the perspective of maintenance, such as lead-cooled and molten-salts liquid reactors.
Utilizzare la fusione nucleare come fonte di energia comporta sfide uniche in termini di esercizio e manutenzione a causa delle condizioni estreme e originali. Basandosi sull'esperienza del Joint European Torus (JET), fin dalle prime fasi di progettazione, gli attuali e futuri impianti per la fusione devono prevedere la manutenzione tramite manipolazione remota, poiché i livelli elevati di radiazione impediscono l'intervento di operatori umani. Ad esempio, durante la manutenzione, il tasso di dose atteso dopo lo spegnimento sul Target Assembly dell'International Fusion Materials Irradiation Facility – Demo Oriented NEutron Source (IFMIF-DONES) supera 1 Sv/h, mentre la dose massima totale consentita per gli operatori è di 20 mSv/anno. Inoltre, la combinazione tra manipolazione remota e l’ambiente estremo e unico dal punto di vista tecnologico complica notevolmente la progettazione del sistema, richiedendo soluzioni su misura e innovative. Infine, la necessità di effettuare la manutenzione da remoto introduce ulteriori requisiti e vincoli progettuali, talvolta unici, come la necessità di sistemi di autocentraggio. Tempi di manutenzione prolungati possono incidere significativamente sulle operazioni e sulla disponibilità degli impianti; pertanto, sin dalle prime fasi, tutti i design proposti dovrebbero essere testati e ottimizzati per garantire la compatibilità con i sistemi di manutenzione remota (remote handling), semplificando così le future operazioni di manutenzione. Considerando le diverse fasi di progettazione dei componenti per la fusione, lo sviluppo di un framework flessibile e adattabile utile a testare e ottimizzare le operazioni di manutenzione remota e il sistema di manipolazione remota, migliorerebbe e semplificherebbe notevolmente il processo di progettazione degli impianti per la fusione. Attualmente, un tale framework non è disponibile. Per questo motivo, questa tesi si propone di sviluppare una metodologia integrata per la progettazione, modellazione, simulazione e verifica sperimentale del processo della manutenzione remota degli impianti di fusione. Questo studio utilizza come caso studio principale il remote handling dei componenti della Test Cell di IFMIF-DONES. Successivamente, l’approccio viene esteso alla manutenzione remota del European DEMOnstration power plant (DEMO). Tenendo conto di quanto detto, i due impianti si trovano attualmente in fasi di progettazione molto diverse: IFMIF-DONES è in costruzione, mentre DEMO è ancora in fase preliminare, il che richiede una metodologia in grado di soddisfare requisiti distinti per entrambe le strutture. Più nel dettaglio, questa tesi inizia analizzando i requisiti di manutenzione remota della parte centrale di IFMIF-DONES, ovvero la Test Cell. Vengono analizzati in dettaglio i requisiti, i componenti e il sistema di remote handling della Test Cell, valutando lo stato del design al fine di sviluppare una campagna di test sulla manipolazione remota per i componenti della Test Cell. Successivamente, le procedure di manutenzione per i componenti della Test Cell vengono sviluppate utilizzando diagrammi di flusso come primo passo del framework integrato proposto. Queste procedure vengono poi utilizzate per sviluppare il processo dettagliato per i due prototipi testati in questo studio: i) il bridge dei connettori elettrici che connette l’High Flux Test Module al sistema di controllo di IFMIF-DONES. ii) Il One Point Mechanism – Fast Disconnecting System che collega il Target Assembly alla linea dell'acceleratore. Nell’ambito della metodologia proposta, la Functional Breakdown Structure e la components/basic functions matrix vengono utilizzate per identificare potenziali scenari di guasto nella procedura di manipolazione remota, i quali sono poi testati sulla Divertor Refurbishment Platform di ENEA Brasimone. Le procedure di manipolazione remota del bridge dei connettori elettrici vengono quindi trasposte in modelli e simulate utilizzando le reti di Petri, con successiva validazione sperimentale per verificarne l’efficacia. Questo processo di validazione, che non è possibile sui componenti ancora in fase di progettazione come DEMO, dimostra l'affidabilità e l’efficacia dell’approccio proposto, identificando margini di miglioramento e ottimizzazione sia nel design del bridge sia nella procedura di manutenzione. Infine, per valutare l’adattabilità dell’approccio basato sulle reti di Petri, e più in generale del framework proposto, lo studio è stato esteso a DEMO, con lo sviluppo e il test del sistema di remote handling nelle prime fasi di progettazione. Questa analisi ha evidenziato che le fasi di ispezione sono le più critiche e che il tipo del tipo di sistema robotico di ispezione ha il più alto peso sulla durata del processo di manutenzione. Dal punto di vista ingegneristico, i risultati di questa tesi contribuiranno alla progettazione del sistema di manipolazione remota di DEMO e del suo design e allo sviluppo del processo di manutenzione di IFMIF-DONES e dei suoi componenti. Grazie all’adattabilità e alla generalità delle reti di Petri e del framework proposto, la metodologia presentata in questa tesi può essere applicata anche nelle fasi future di sviluppo di DEMO e IFMIF-DONES, così come per altri impianti a fusione per i quali la manutenzione remota rappresenta una priorità. Inoltre, le reti di Petri possono essere utilizzate durante la fase di esercizio per monitorare il processo di manutenzione, collegandosi direttamente all'impianto. Infine, la metodologia proposta può essere estesa alla manutenzione di impianti completamente diversi, come le centrali elettriche convenzionali e i reattori a fissione di IV Generazione, come quelli raffreddati a piombo o a sali fusi.
Development and analysis of an enhanced remote handling maintenance framework for nuclear fusion facilities
Benzoni, Gabriele
2024/2025
Abstract
Compared to nuclear fission, nuclear fusion entails unique operational and maintenance challenges due to the extreme and unique operating conditions. The experience with the Joint European Torus (JET) has shown how current and future fusion facilities must consider remote handling maintenance from the early design stage, due to the high radiation levels that prevent direct human intervention. For example, during maintenance, the shutdown dose rate of the International Fusion Materials Irradiation Facility – Demo Oriented NEutron Source (IFMIF-DONES) Target Assembly is higher than 1 Sv/h, while the maximum allowable total dose to the operators is 20 mSv/y. The combination of remote handling and the extreme and unique environmental conditions drastically complicates the system design from a technological point of view, often requiring custom and one-of-a-kind solutions. Furthermore, the need for remote handling also complicates the design process as it introduces other, and in some cases unique, requirements and constraints, such as the need for alignment guides. Prolonged maintenance times can significantly impact operations and plant availability; therefore, from the very first stages, all proposed designs should be tested and optimised for compatibility with remote handling systems to simplify future maintenance tasks during operation. Given that the diverse fusion components are in different design stages, developing an adaptable and flexible framework to test and optimise the set of remote maintenance operations and the remote handling system, regardless of the component technological readiness level, would drastically improve and streamline the design process of fusion facilities. Currently, however, such a framework for fusion facilities is lacking: this thesis aims at filling this gap by defining an integrated methodology for developing, modelling, simulating, and experimentally verifying the overall remote handling maintenance for fusion plants and their components. In particular, this work adopted the IFMIF-DONES accelerator facility remote handling maintenance for the Test Cell components as the key test case, to which it follows the extension to the European DEMOnstration power plant (DEMO) remote handling. In line with the above statements, these two facilities are currently in two quite different design phases, with IFMIF-DONES under construction and DEMO still in preliminary design: this will require a framework able to cope with the distinct requirements of the two facilities. More in detail, this work starts by analysing the remote handling maintenance requirements of the heart of the IFMIF-DONES facility, the Test Cell. First, remote handling maintenance requirements, the components, and the Test Cell remote-handling system are analysed in detail, assessing the state of the art to develop an integrated remote handling test campaign on the Test Cell components. Then, as the first step in the proposed integrated framework, the maintenance procedures for the components of the Test Cell are developed using flow charts. These procedures are then applied to the experimental analysis of two IFMIF-DONES physical systems carried out in this research: i) The Electrical Connectors Bridge, which connects the High Flux Test Module to the IFMIF-DONES control system. ii) The One-Point Mechanism - Fast Disconnecting System, which connects the Target Assembly to the accelerator line. As part of the proposed methodology, the Functional Breakdown Structure and the components/basic function matrix are used to identify potential failure scenarios in the remote handling procedure and then tested in the Divertor Refurbishment Platform (DRP) lab of ENEA Brasimone. The remote handling procedures of the Electrical Connectors bridge were then translated into models and simulated using Petri nets; the effectiveness of this approach was then validated through experimental activities. This validation process, which is not possible on design-only components such as DEMO, highlights the reliability and effectiveness of the proposed approach, which indeed was able to identify the margins for improvement and optimisation in the bridge design and the maintenance procedure. Finally, to assess the adaptability of the Petri nets approach and, more generally, of the proposed framework, to other components and fusion facilities, the work is extended to DEMO for developing and testing the remote handling system during the early design stages. This analysis highlighted that the inspection steps are indeed the most critical and that the choice of the type of inspection system has the highest influence on the duration of the maintenance. From an engineering perspective, the results of this thesis work will help progress the design of the DEMO remote handling system, the DEMO facility, the IFMIF-DONES maintenance procedures, and the IFMIF-DONES components. Thanks to the adaptability and generality of the Petri nets and of the proposed framework, the methodology presented in this thesis work can be used in future stages of the development of DEMO and IFMIF-DONES, as well as for other fusion facilities for which remote handling maintenance is a priority. Additionally, Petri nets can be used during operation to monitor the maintenance process by being directly wired to the physical facility. Finally, the proposed methodology can be extended for the maintenance of even different facilities, such as conventional power plants and Generation-IV fission reactors, which also present some unique challenges from the perspective of maintenance, such as lead-cooled and molten-salts liquid reactors.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_BNZ-2.pdf
non accessibile
Dimensione
32.38 MB
Formato
Adobe PDF
|
32.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238717