Material property degradation in aircraft components, including fatigue in metallic structures and delamination in composite materials, poses severe risks to structural integrity, operational safety, and economic performance during operations. Metallic components, such as fan blades, are particularly susceptible to fatigue from vibrations, high-frequency rotations, and in-flight stresses, while composite materials may suffer from delamination caused by operational impacts or excessive stresses. These degradation phenomena, if undetected, can lead to catastrophic failures. Ultrasonic-based structural health monitoring (SHM) systems have emerged as a promising solution for detecting material degradation and assessing structural integrity. Ultrasonic waves, including surface acoustic waves (SAWs) and Lamb waves, propagate through materials while interacting with defects, carrying valuable information about material properties and damage characteristics. By analyzing these waves using signal processing techniques, degradation features can be extracted and correlated with physical damage severity, enabling safety assessments and maintenance decisions. Actuators such as grating lasers and piezoelectric macro fiber composites (MFCs) provide effective approaches generate directional ultrasonic waves, enhancing signal strength in targeted regions and facilitating the development of in-situ monitoring systems. This thesis focuses on the development of ultrasound-based SHM techniques for directional excitation and in-situ monitoring of material degradation in aircraft components. The efficient finite element (FE)-based numerical simulation programs were developed first, to investigate the wave behaviors of grating laser source-induced SAWs and MFC-driven Lamb waves, providing guidance for the subsequent applications. For metallic materials, a multi-parameter synchronous measurement system was developed for monitoring fatigue damage in metallic materials. This system utilizes a grating laser source to generate narrowband SAWs with strong directional characteristics. The SAWs are detected using a laser interferometer, establishing a high-resolution, non-contact monitoring system. By simultaneously extracting parameters such as wave velocity, sum-frequency nonlinear coefficients, and reflection/transmission coefficients from a single measurement, the system enables comprehensive assessment of fatigue damage, including residual strain, closed micro-cracks, and macroscopic cracks. The vibration fatigue online monitoring results demonstrate that integrating multiple parameters allows the system to effectively characterize localized fatigue damage at various stages before fracture. For composite materials, MFCs were utilized for Lamb wave excitation and sensing, offering a lightweight and adaptable solution for damage detection. A 3D FEM simulation framework was established to model the interaction between Lamb waves and delamination. The reflection coefficients of the S0 wave were used to localize the delamination's longitudinal position through time-of-flight (TOF) extraction by cross-correlation and continuous wavelet transform (CWT). The feature-based B-scan imaging approach was proposed to visualize the damage, enabling effective assessment of delamination severity and distribution. This work demonstrates significant improvements in ultrasonic-based SHM systems for both metals and composites, providing a framework for detecting material degradation including metal fatigue damage and composite delamination. The developed methods enhance the accuracy, efficiency, and applicability of ultrasonic-based SHM systems, contributing to predictive maintenance strategies and structural integrity assessments in aeronautical engineering. These advancements can offer valuable insights into future developments in SHM technologies.
Il degrado delle proprietà dei materiali nei componenti aeronautici, inclusa la fatica nelle strutture metalliche e la delaminazione nei materiali compositi, comporta gravi rischi per l’integrità strutturale, la sicurezza operativa e le prestazioni economiche durante le operazioni. I componenti metallici, come le pale del ventilatore, sono particolarmente soggetti alla fatica causata da vibrazioni, rotazioni ad alta frequenza e sollecitazioni in volo, mentre i materiali compositi possono subire delaminazioni dovute a impatti operativi o a sollecitazioni eccessive. Questi fenomeni di degrado, se non rilevati, possono portare a guasti catastrofici. I sistemi di monitoraggio strutturale basati su ultrasuoni (SHM) sono emersi come una soluzione promettente per rilevare il degrado dei materiali e valutare l’integrità strutturale. Le onde ultrasoniche, incluse le onde acustiche superficiali (SAW) e le onde di Lamb, si propagano attraverso i materiali interagendo con i difetti, trasportando informazioni preziose sulle proprietà dei materiali e sulle caratteristiche dei danni. Analizzando queste onde mediante tecniche di elaborazione del segnale, è possibile estrarre caratteristiche di degrado e correlarle alla gravità dei danni fisici, consentendo valutazioni di sicurezza e decisioni di manutenzione. Attuatori come i laser a reticolo e i compositi piezoelettrici a macrofibre (MFC) offrono approcci efficaci per generare onde ultrasoniche direzionali, migliorando la forza del segnale nelle regioni mirate e facilitando lo sviluppo di sistemi di monitoraggio in-situ. Questa tesi si concentra sullo sviluppo di tecniche SHM basate su ultrasuoni per l’eccitazione direzionale e il monitoraggio in-situ del degrado dei materiali nei componenti aeronautici. Sono stati sviluppati inizialmente efficienti programmi di simulazione numerica basati su elementi finiti (FE) per studiare il comportamento delle onde generate da sorgenti laser a reticolo (SAW) e da MFC (onde di Lamb), fornendo indicazioni per le successive applicazioni. Per i materiali metallici, è stato sviluppato un sistema di misurazione sincrona multi-parametrica per il monitoraggio del danno da fatica. Questo sistema utilizza una sorgente laser a reticolo per generare SAW a banda stretta con caratteristiche direzionali marcate. Le SAW vengono rilevate mediante un interferometro laser, stabilendo un sistema di monitoraggio ad alta risoluzione e senza contatto. Estraendo simultaneamente parametri come la velocità dell’onda, i coefficienti non lineari di somma di frequenza e i coefficienti di riflessione/trasmissione da una singola misurazione, il sistema consente una valutazione completa del danno da fatica, inclusi deformazioni residue, microcricche chiuse e cricche macroscopiche. I risultati del monitoraggio online della fatica da vibrazione dimostrano che l’integrazione di più parametri consente al sistema di caratterizzare efficacemente il danno localizzato da fatica nelle varie fasi prima della frattura. Per i materiali compositi, gli MFC sono stati utilizzati per l’eccitazione e la rilevazione delle onde di Lamb, offrendo una soluzione leggera e adattabile per il rilevamento dei danni. È stato stabilito un framework di simulazione FEM 3D per modellare l’interazione tra onde di Lamb e delaminazione. I coefficienti di riflessione dell’onda S0 sono stati utilizzati per localizzare la posizione longitudinale della delaminazione mediante estrazione del tempo di volo (TOF) tramite correlazione incrociata e trasformata wavelet continua (CWT). È stato proposto un approccio di imaging B-scan basato su caratteristiche per visualizzare il danno, consentendo una valutazione efficace della gravità e distribuzione della delaminazione. Questo lavoro dimostra miglioramenti significativi nei sistemi SHM basati su ultrasuoni sia per i metalli che per i compositi, fornendo un framework per il rilevamento del degrado dei materiali, inclusi i danni da fatica nei metalli e la delaminazione nei compositi. I metodi sviluppati migliorano la precisione, l’efficienza e l’applicabilità dei sistemi SHM basati su ultrasuoni, contribuendo a strategie di manutenzione predittiva e alla valutazione dell’integrità strutturale in ingegneria aeronautica. Questi progressi possono offrire preziosi spunti per sviluppi futuri nelle tecnologie SHM.
Development of ultrasound based in-situ monitoring method for aeronautical components
Kou, Xing
2024/2025
Abstract
Material property degradation in aircraft components, including fatigue in metallic structures and delamination in composite materials, poses severe risks to structural integrity, operational safety, and economic performance during operations. Metallic components, such as fan blades, are particularly susceptible to fatigue from vibrations, high-frequency rotations, and in-flight stresses, while composite materials may suffer from delamination caused by operational impacts or excessive stresses. These degradation phenomena, if undetected, can lead to catastrophic failures. Ultrasonic-based structural health monitoring (SHM) systems have emerged as a promising solution for detecting material degradation and assessing structural integrity. Ultrasonic waves, including surface acoustic waves (SAWs) and Lamb waves, propagate through materials while interacting with defects, carrying valuable information about material properties and damage characteristics. By analyzing these waves using signal processing techniques, degradation features can be extracted and correlated with physical damage severity, enabling safety assessments and maintenance decisions. Actuators such as grating lasers and piezoelectric macro fiber composites (MFCs) provide effective approaches generate directional ultrasonic waves, enhancing signal strength in targeted regions and facilitating the development of in-situ monitoring systems. This thesis focuses on the development of ultrasound-based SHM techniques for directional excitation and in-situ monitoring of material degradation in aircraft components. The efficient finite element (FE)-based numerical simulation programs were developed first, to investigate the wave behaviors of grating laser source-induced SAWs and MFC-driven Lamb waves, providing guidance for the subsequent applications. For metallic materials, a multi-parameter synchronous measurement system was developed for monitoring fatigue damage in metallic materials. This system utilizes a grating laser source to generate narrowband SAWs with strong directional characteristics. The SAWs are detected using a laser interferometer, establishing a high-resolution, non-contact monitoring system. By simultaneously extracting parameters such as wave velocity, sum-frequency nonlinear coefficients, and reflection/transmission coefficients from a single measurement, the system enables comprehensive assessment of fatigue damage, including residual strain, closed micro-cracks, and macroscopic cracks. The vibration fatigue online monitoring results demonstrate that integrating multiple parameters allows the system to effectively characterize localized fatigue damage at various stages before fracture. For composite materials, MFCs were utilized for Lamb wave excitation and sensing, offering a lightweight and adaptable solution for damage detection. A 3D FEM simulation framework was established to model the interaction between Lamb waves and delamination. The reflection coefficients of the S0 wave were used to localize the delamination's longitudinal position through time-of-flight (TOF) extraction by cross-correlation and continuous wavelet transform (CWT). The feature-based B-scan imaging approach was proposed to visualize the damage, enabling effective assessment of delamination severity and distribution. This work demonstrates significant improvements in ultrasonic-based SHM systems for both metals and composites, providing a framework for detecting material degradation including metal fatigue damage and composite delamination. The developed methods enhance the accuracy, efficiency, and applicability of ultrasonic-based SHM systems, contributing to predictive maintenance strategies and structural integrity assessments in aeronautical engineering. These advancements can offer valuable insights into future developments in SHM technologies.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_Xing_FinalVersion.pdf
non accessibile
Dimensione
92.49 MB
Formato
Adobe PDF
|
92.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238737