Ensuring excellent balance between performance and affordability, short fibre reinforced thermoplastic polymers are an attractive solution for countless applications in various industrial sectors. Particularly, they are increasingly be considered for metal replacement, leveraging on their top-rated performance to mass ratio. However, accomplish this task is challenging. Their mechanical behaviour strongly depends on multiple factors, including the environmental conditions, the inherent anisotropic nature, the sensitivity to the loading condition, such as multiaxial load (triaxiality) or stress ratio for a repetitive load, and numerous more. Furthermore, the manufacturing process designs their internal structure, at micro-level (in the order of µm) and at meso-level (in the order of mm). The structural features at both scales predominantly drive the mechanical response of the composite at macro-level. Nowadays, injection moulding holds a dominant position as manufacturing technique for most of the components headed to industrial applications. On the other hand, fused filament fabrication technique, which collocates itself under the hat of the additive manufacturing technique, is an emerging manufacturing process that, in principle, enables uniquely intricated shapes to be manufactured. However, initially able to process neat polymers of modest mechanical properties, it outbroke as rapid prototyping technology, to support design and development of components. Recent advancement allowed high performance thermoplastic polymers and polymer composites (short and continuous fibre reinforced) to be processed as well. This technological leap, therefore, may has the potential to revolutionize the paradigm of manufacturing thermoplastic polymeric composites. Since the structural features are legacy of the manufacturing process, depending on the deposition strategy, 3D structures may resemble either laminates, where subsequent layers consist of material beads are arranged parallel into well-organized raster, or lattice architectures, where the structure consist of a repetition of the unit cell in the space. Advanced design tools enable accurate structural simulations of injection moulded short fibre reinforced polymers to be performed, integrating the outcomes of the manufacturing process. These tools are supported by sophisticated material models which adequately represent the material static and fatigue behaviour. Current modelling methodologies of the anisotropic material response rely on the concept of discretization of material volume in pseudo-grains (auxiliary fictitious structures which feature unidirectional fibre orientation) and subsequent homogenization. Usually, the calibration of the parameters for modelling the pseudo-grain, depending on the fibre orientation, is performed through reverse engineering approach. This method is built on an often-overlooked physical limitations of obtaining such a structure straight from the manufacturing process. The present research related to the injection moulded short fibre reinforced polymers investigates the limitations of this approach, proposing to integrate the current worldwide accepted workflow with a solution which aims to reproduce the pseudo-grain concept. To this end, coupons with almost homogeneous, well oriented fibre orientation were machine out from specimens with more complex, layered microstructure in terms of fibre orientation. Mechanical testing of such structures delivered additional significant information that are, in general, overlooked by the standard procedure of material testing and modelling. It was observed that the endurance limits of such structures may raise concerns about the reliability of values obtained from standard specimen testing. Microstructural stratification of the fibre orientation may indeed undermine the accuracy of characterizations performed on specimens nominally oriented at 90° to the fibre direction. At present, the characterization aimed to support the modelling of the mechanical behaviour of short fibre reinforced polymers, obtained by fused filament fabrication, is a subject of research to leverage on this technology to produce functional components of unprecedent geometries. The research work presented in this thesis in regards of this subject aimed to investigate the relationship between the internal structure and the macro-scale mechanical properties of a short fibre reinforced polymeric material coupon. The ultimate purpose is to lay the foundation for developing a modelling workflow for this class of materials, which appropriately transfer the modelling strategies and tools available for their injection moulded counterpart. To this purpose the typical deposition strategies adopted by the printer, alternating layers of well-organized material beads oriented at 0°/90° and +45°/-45°, have been tested statically and dynamically. Along with that, the anisotropy properties of the material were investigated within the boundaries of the technological limitations offered by the printer, in terms of deposition freedom of the material beads. A marked anisotropy and a distinctive response of the material, also in terms of failure behaviour, were observed depending on the meso-structural morphologies. These aspects were then related to the distinctive features of the internal structures investigated.
Garantendo un eccellente equilibrio tra prestazioni e costi, i polimeri termoplastici rinforzati con fibre corte rappresentano una soluzione altamente attrattiva per una vasta gamma di applicazioni in diversi settori industriali. In particolare, facendo leva sul loro elevato rapporto prestazioni/peso, tanno acquisendo crescente interesse come alternativa ai metalli, . Tuttavia, sostituire i metalli con questi materiali rappresenta una sfida complessa. Il loro comportamento meccanico dipende da molteplici fattori, tra cui le condizioni ambientali, l'intrinseca natura anisotropa, la sensibilità alle condizioni di carico (come carichi multiasiali (trissialità) o il rapporto di ciclo in caso di carico ripetuto) e molti altri aspetti ancora. Inoltre, il processo produttivo determina la struttura interna del materiale, sia a livello microstrutturale (nell’ordine dei micrometri) sia a livello mesostrutturale (nell’ordine dei millimetri). Le caratteristiche strutturali a entrambe le scale influenzano in modo preponderante la risposta meccanica del composito a livello macroscopico. Attualmente, lo stampaggio a iniezione riveste un ruolo dominante tra le tecniche di produzione per componenti destinati ad applicazioni industriali. Dall’altro lato, la tecnica di Fused Filament Fabrication, riconducibile al più ampio ambito della manifattura additiva, rappresenta un processo emergente che, in linea di principio, consente la realizzazione di geometrie estremamente complesse. Inizialmente limitata alla lavorazione di polimeri puri dalle proprietà meccaniche contenute, la tecnologia Fused Filament Fabrication si è affermata come strumento per la prototipazione rapida a supporto della progettazione e dello sviluppo. Tuttavia, i recenti progressi tecnologici hanno reso possibile la lavorazione anche di polimeri termoplastici ad alte prestazioni e di compositi polimerici rinforzati, sia con fibre corte che continue. Questo salto tecnologico potrebbe, in prospettiva, rivoluzionare il paradigma di produzione dei compositi polimerici termoplastici. Poiché le caratteristiche strutturali sono ereditate dal processo produttivo, in funzione della strategia di deposizione, le strutture realizzate in 3D possono assumere configurazioni simili a laminati—in cui strati successivi di filamenti vengono disposti in raster ordinati e paralleli—oppure a strutture reticolari, costituite dalla ripetizione spaziale di una cella unitaria. Gli attuali strumenti di progettazione avanzata consentono di simulare con elevata accuratezza il comportamento strutturale dei polimeri rinforzati a fibre corte stampati a iniezione, integrando i risultati del processo produttivo. Tali strumenti si basano su modelli di materiale sofisticati, in grado di rappresentare in modo adeguato il comportamento statico e a fatica del materiale. Le attuali metodologie di modellazione della risposta anisotropa del materiale si fondano sul concetto di discretizzazione del volume in pseudo-grani (strutture fittizie ausiliarie con orientazione unidirezionale delle fibre) e successiva omogeneizzazione. La calibrazione dei parametri per modellare lo pseudo-grano, funzione dell’orientamento delle fibre, viene di norma eseguita tramite approcci di reverse engineering. Tale metodo, però, si basa su un’ipotesi fisica spesso trascurata: la difficoltà di ottenere una struttura omogenea direttamente dal processo produttivo. La presente ricerca, relativa ai polimeri rinforzati con fibre corte stampati a iniezione, indaga i limiti di tale approccio, proponendo un’integrazione al flusso di lavoro attualmente accettato a livello internazionale, con l’obiettivo di riprodurre il concetto di pseudo-grano in maniera più realistica. A tal fine, sono stati ricavati provini con orientamento delle fibre quasi omogeneo e ben definito, partendo da campioni con microstruttura più complessa e stratificata in termini di orientamento. Le prove meccaniche su tali strutture hanno fornito informazioni aggiuntive significative, generalmente trascurate dalle procedure standard di caratterizzazione e modellazione del materiale. È stato osservato che i limiti di resistenza a fatica di tali strutture possono sollevare dubbi sull’affidabilità dei valori ottenuti mediante provini standard. La stratificazione microstrutturale dell’orientamento delle fibre può infatti compromettere l’accuratezza delle caratterizzazioni eseguite su provini nominalmente orientati a 90° rispetto alla direzione delle fibre. Ad oggi, la caratterizzazione dei polimeri rinforzati a fibre corte realizzati tramite Fused Filament Fabrication, finalizzata alla modellazione del loro comportamento meccanico, costituisce un ambito di ricerca attivo con l’obiettivo di sfruttare questa tecnologia per la produzione di componenti funzionali dalle geometrie inedite. Il lavoro di ricerca presentato in questa tesi, in merito a tale tematica, si è concentrato sull’indagine del legame tra la struttura interna e le proprietà meccaniche macroscopiche di provini in materiale polimerico rinforzato a fibre corte. Lo scopo ultimo è porre le basi per lo sviluppo di un flusso di modellazione dedicato a questa classe di materiali, che trasferisca efficacemente le strategie e gli strumenti modellistici già consolidati per la controparte stampata a iniezione. A tal fine, sono state sottoposte a test statici e dinamici le tipiche strategie di deposizione adottate dalle stampanti, basate sull’alternanza di strati composti da filamenti orientati a 0°/90° e +45°/-45°. Parallelamente, sono state analizzate le proprietà anisotrope del materiale entro i limiti tecnologici imposti dalla stampante, in termini di libertà di deposizione dei filamenti. È emersa una marcata anisotropia e una risposta meccanica distintiva, anche in termini di modalità di cedimento, dipendente dalle morfologie mesostrutturali. Questi aspetti sono stati infine correlati alle specifiche caratteristiche delle strutture interne investigate.
Modelling and testing of short fibre reinforced polymers
Canegrati, Andrea
2024/2025
Abstract
Ensuring excellent balance between performance and affordability, short fibre reinforced thermoplastic polymers are an attractive solution for countless applications in various industrial sectors. Particularly, they are increasingly be considered for metal replacement, leveraging on their top-rated performance to mass ratio. However, accomplish this task is challenging. Their mechanical behaviour strongly depends on multiple factors, including the environmental conditions, the inherent anisotropic nature, the sensitivity to the loading condition, such as multiaxial load (triaxiality) or stress ratio for a repetitive load, and numerous more. Furthermore, the manufacturing process designs their internal structure, at micro-level (in the order of µm) and at meso-level (in the order of mm). The structural features at both scales predominantly drive the mechanical response of the composite at macro-level. Nowadays, injection moulding holds a dominant position as manufacturing technique for most of the components headed to industrial applications. On the other hand, fused filament fabrication technique, which collocates itself under the hat of the additive manufacturing technique, is an emerging manufacturing process that, in principle, enables uniquely intricated shapes to be manufactured. However, initially able to process neat polymers of modest mechanical properties, it outbroke as rapid prototyping technology, to support design and development of components. Recent advancement allowed high performance thermoplastic polymers and polymer composites (short and continuous fibre reinforced) to be processed as well. This technological leap, therefore, may has the potential to revolutionize the paradigm of manufacturing thermoplastic polymeric composites. Since the structural features are legacy of the manufacturing process, depending on the deposition strategy, 3D structures may resemble either laminates, where subsequent layers consist of material beads are arranged parallel into well-organized raster, or lattice architectures, where the structure consist of a repetition of the unit cell in the space. Advanced design tools enable accurate structural simulations of injection moulded short fibre reinforced polymers to be performed, integrating the outcomes of the manufacturing process. These tools are supported by sophisticated material models which adequately represent the material static and fatigue behaviour. Current modelling methodologies of the anisotropic material response rely on the concept of discretization of material volume in pseudo-grains (auxiliary fictitious structures which feature unidirectional fibre orientation) and subsequent homogenization. Usually, the calibration of the parameters for modelling the pseudo-grain, depending on the fibre orientation, is performed through reverse engineering approach. This method is built on an often-overlooked physical limitations of obtaining such a structure straight from the manufacturing process. The present research related to the injection moulded short fibre reinforced polymers investigates the limitations of this approach, proposing to integrate the current worldwide accepted workflow with a solution which aims to reproduce the pseudo-grain concept. To this end, coupons with almost homogeneous, well oriented fibre orientation were machine out from specimens with more complex, layered microstructure in terms of fibre orientation. Mechanical testing of such structures delivered additional significant information that are, in general, overlooked by the standard procedure of material testing and modelling. It was observed that the endurance limits of such structures may raise concerns about the reliability of values obtained from standard specimen testing. Microstructural stratification of the fibre orientation may indeed undermine the accuracy of characterizations performed on specimens nominally oriented at 90° to the fibre direction. At present, the characterization aimed to support the modelling of the mechanical behaviour of short fibre reinforced polymers, obtained by fused filament fabrication, is a subject of research to leverage on this technology to produce functional components of unprecedent geometries. The research work presented in this thesis in regards of this subject aimed to investigate the relationship between the internal structure and the macro-scale mechanical properties of a short fibre reinforced polymeric material coupon. The ultimate purpose is to lay the foundation for developing a modelling workflow for this class of materials, which appropriately transfer the modelling strategies and tools available for their injection moulded counterpart. To this purpose the typical deposition strategies adopted by the printer, alternating layers of well-organized material beads oriented at 0°/90° and +45°/-45°, have been tested statically and dynamically. Along with that, the anisotropy properties of the material were investigated within the boundaries of the technological limitations offered by the printer, in terms of deposition freedom of the material beads. A marked anisotropy and a distinctive response of the material, also in terms of failure behaviour, were observed depending on the meso-structural morphologies. These aspects were then related to the distinctive features of the internal structures investigated.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhDThesis_AC_Deposited_Uff.pdf
accessibile in internet per tutti
Dimensione
9.51 MB
Formato
Adobe PDF
|
9.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238777