Since the beginning of the space era, which started in 1957 with the launch of Sputnik 1, the population of objects orbiting the Earth has continued to evolve. On one hand, due to the increased use of satellites for scientific missions as well as for improving services on the ground, the number of active objects has been continuously growing, with an acceleration in recent years following the introduction of large constellations. On the other hand, satellites and rocket bodies that remain in orbit at the end of their mission, along with fragmentations occurring in orbit, have also increased the background population of objects no longer controllable from Earth, posing a significant threat, particularly to active objects. All this has led to a greater focus on tracking these objects (some of which, however, are not visible from Earth) and on defining and improving guidelines to mitigate the potential proliferation of debris. To ensure the sustainable evolution of the space around the Earth, detailed analyses are required to provide consistent and up-to-date information on the current state of the space environment. Within the broader sphere of space sustainability, different metrics have been defined and analysed over the years to understand the impact that an object (whether active/controllable or not) has on the space environment, often focusing on the study of its potential fragmentation. Their objective is to understand, on one hand, which objects are the most dangerous in the event of fragmentation and could therefore be selected as targets for future Active Debris Removal missions, and on the other hand, to assess the influence that a new mission will have on existing missions in orbit and the space environment as a whole. This second type is investigated here with two main objectives: to expand and improve its applicability to different categories of mission architectures (e.g., single satellites, satellite constellations) and different orbital regions beyond LEO, and to explore its use in a space capacity model for the study of fragmentation. The starting point concerns the study of the metric in LEO, to improve it and identify its weaknesses. Once the basic definition has been established, an analysis is carried out to determine the parameters and modifications necessary to expand the formulation to MEO and GTO regions, as well as to evaluate satellite constellations. The latter have an impact on the model used for impact assessment, requiring an in-depth analysis to understand how and to what extent their introduction has influenced and will continue to influence the space environment in the future. The concept of space capacity, on the other hand, is used here in terms of "consumption" to assess the level of risk associated with fragmentation in orbit. A model has been developed to identify the key parameters that most influence the hazardousness of fragmentation and to assign a corresponding risk level. The model incorporates an evolution model, a breakup model, and statistical methods to compare changes in the consumed capacity of a population of objects over time. In both cases, several test cases are defined and analysed to assess the validity of the models. The doctoral research presented in this dissertation has received funding from the European Space Agency’s contract 4000133981/21/D/KS and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101089265 - GREENSPECIES).
Dall’inizio dell’era spaziale, avvenuto nel 1957 con il lancio dello Sputnik 1, la popolazione di oggetti in orbita attorno alla Terra ha continuato ad evolversi. Da un lato, a causa dell’aumento dell’uso dei satelliti per missioni scientifiche e per il miglioramento dei servizi a terra, il numero di oggetti attivi é in costante crescita, con un’accelerazione negli ultimi anni a seguito dell’introduzione delle grandi costellazioni. Dall’altro lato, i satelliti e i corpi dei lanciatori che rimangono in orbita al termine della loro missione, insieme alle frammentazioni che avvengono nello spazio, hanno aumentato la popolazione di fondo di oggetti non piú controllabili dalla Terra, rappresentando una minaccia significativa, in particolare per gli oggetti attivi. Tutto ció ha portato a un maggiore focus sul tracciamento di questi oggetti (alcuni dei quali, tuttavia, non sono visibili dalla Terra) e sulla definizione e il miglioramento delle linee guida per mitigare la potenziale proliferazione dei detriti. Per garantire un’evoluzione sostenibile dello spazio attorno alla Terra, sono necessarie analisi dettagliate per fornire informazioni coerenti e aggiornate sullo stato attuale dell’ambiente spaziale. All’interno della piú ampia sfera della sostenibilitá spaziale, nel corso degli anni sono state definite e analizzate diverse metriche per comprendere l’impatto che un oggetto (sia esso attivo/controllabile o meno) ha sull’ambiente spaziale, concentrandosi spesso sullo studio di una sua possibile frammentazione. Il loro obiettivo é comprendere, da un lato, quali oggetti siano i piú pericolosi in caso di frammentazione e possano quindi essere selezionati come target per future missioni di Active Debris Removal, e, dall’altro, valutare l’influenza che una nuova missione avrá sulle missioni giá esistenti in orbita e sull’ambiente spaziale nel suo complesso. Questa seconda tipologia viene investigata qui con due obiettivi principali: espandere e migliorare la sua applicabilitá a diverse categorie di architetture di missioni (ad esempio, satelliti singoli e costellazioni di satelliti) e a diverse regioni orbitali al di fuori della LEO, oltre a esplorare il suo utilizzo in un modello di capacitá dello spazio per lo studio delle frammentazioni. Il punto di partenza riguarda lo studio della metrica in LEO, per migliorarla e individuarne i punti deboli. Una volta definita la base concettuale, viene condotta un’analisi per identificare i parametri e le modifiche necessarie ad espandere la formulazione alle regioni MEO e GTO, nonché per valutare le costellazioni di satelliti. Queste ultime hanno infatti un impatto sul modello utilizzato per la valutazione dell’impatto, rendendo necessaria un’analisi approfondita per comprendere quanto e in che modo la loro introduzione abbia influenzato e continuerá a influenzare l’ambiente spaziale in futuro. Il concetto di capacitá dello spazio, invece, viene qui utilizzato in termini di "consumo" per valutare il livello di rischio associato alle frammentazioni in orbita. é stato sviluppato un modello per individuare i parametri chiave che influenzano maggiormente la pericolositá di una frammentazione e per assegnare un corrispondente livello di rischio. Il modello integra un modello di evoluzione, un modello di frammentazione e metodi statistici per confrontare le variazioni della capacitá consumata da una popolazione di oggetti nel tempo. In entrambi i casi, diversi test case vengono definiti e analizzati per valutare la validitá dei modelli. La ricerca di dottorato presentata in questa dissertazione ha ricevuto finanziamenti dal contratto 4000133981/21/D/KS dell’Agenzia Spaziale Europea e dal Consiglio Europeo della Ricerca nell’ambito del programma di ricerca e innovazione Horizon 2020 dell’Unione Europea (contratto di sovvenzione n. 101089265 - GREENSPECIES).
Environmental impact of space objects around the Earth for space sustainability analysis
MUCIACCIA, ANDREA
2024/2025
Abstract
Since the beginning of the space era, which started in 1957 with the launch of Sputnik 1, the population of objects orbiting the Earth has continued to evolve. On one hand, due to the increased use of satellites for scientific missions as well as for improving services on the ground, the number of active objects has been continuously growing, with an acceleration in recent years following the introduction of large constellations. On the other hand, satellites and rocket bodies that remain in orbit at the end of their mission, along with fragmentations occurring in orbit, have also increased the background population of objects no longer controllable from Earth, posing a significant threat, particularly to active objects. All this has led to a greater focus on tracking these objects (some of which, however, are not visible from Earth) and on defining and improving guidelines to mitigate the potential proliferation of debris. To ensure the sustainable evolution of the space around the Earth, detailed analyses are required to provide consistent and up-to-date information on the current state of the space environment. Within the broader sphere of space sustainability, different metrics have been defined and analysed over the years to understand the impact that an object (whether active/controllable or not) has on the space environment, often focusing on the study of its potential fragmentation. Their objective is to understand, on one hand, which objects are the most dangerous in the event of fragmentation and could therefore be selected as targets for future Active Debris Removal missions, and on the other hand, to assess the influence that a new mission will have on existing missions in orbit and the space environment as a whole. This second type is investigated here with two main objectives: to expand and improve its applicability to different categories of mission architectures (e.g., single satellites, satellite constellations) and different orbital regions beyond LEO, and to explore its use in a space capacity model for the study of fragmentation. The starting point concerns the study of the metric in LEO, to improve it and identify its weaknesses. Once the basic definition has been established, an analysis is carried out to determine the parameters and modifications necessary to expand the formulation to MEO and GTO regions, as well as to evaluate satellite constellations. The latter have an impact on the model used for impact assessment, requiring an in-depth analysis to understand how and to what extent their introduction has influenced and will continue to influence the space environment in the future. The concept of space capacity, on the other hand, is used here in terms of "consumption" to assess the level of risk associated with fragmentation in orbit. A model has been developed to identify the key parameters that most influence the hazardousness of fragmentation and to assign a corresponding risk level. The model incorporates an evolution model, a breakup model, and statistical methods to compare changes in the consumed capacity of a population of objects over time. In both cases, several test cases are defined and analysed to assess the validity of the models. The doctoral research presented in this dissertation has received funding from the European Space Agency’s contract 4000133981/21/D/KS and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101089265 - GREENSPECIES).| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_thesis_muciaccia.pdf
accessibile in internet per tutti
Dimensione
33.1 MB
Formato
Adobe PDF
|
33.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/238897