This thesis presents integrated control strategies to address orbit-attitude coupling challenges in low-thrust spacecraft, with applications to asteroid missions and solar sails. These missions are of increasing scientific and economic importance, ranging from planetary defense and asteroid resource utilization to long-duration observation and space-based high energy-consuming big data computation at libration points. Given their reliance on fuel efficiency, autonomy, and precise guidance, such missions demand advanced control schemes capable of managing tightly coupled dynamics under sensing and actuation constraints. A novel classification framework is introduced to categorize orbit-attitude coupling into three types: (1) coupling induced by external perturbations, such as solar radiation pressure (SRP) and gravitational influences; (2) coupling resulting from spacecraft configuration, including flexible structures, vibrations, and fuel sloshing; and (3) mission scenario-driven coupling, which arises in close-proximity operations, high area-to-mass ratios, or synchronized configurations. Five studies are conducted, each addressing orbit-attitude coupling with increasing complexity. For asteroid missions, a barrier-based event-triggered control scheme confines the spacecraft within a designated orbital radius by managing radial velocity while employing a sigmoid event-triggered attitude control for thruster stabilization. Additionally, a hybrid-triggered station-keeping approach mitigates significant orbit-attitude coupling in underactuated spacecraft with three degrees of freedom (DOF) in attitude control and one DOF in orbital control, integrating large-angle maneuvers with hybrid-triggered decision-making to ensure precise orbital radius control near the asteroid. In solar sail applications, orbit-attitude coupling is particularly pronounced due to the sail’s reliance on attitude control for trajectory adjustments, amplified external disturbances, and complex dynamics from extensive Reflectivity Control Device (RCD) usage. To address these challenges, three key contributions are made. First, for the Solar Sail Supercomputer (SSC) concept, a sliding-mode control strategy synchronizes the sail’s orientation with a relay satellite in Geostationary Orbit (GSO) while stabilizing its Z-axis toward the Sun to ensure uninterrupted data transmission at the Earth-Sun-SRP L1 point. Additionally, two fault-tolerant control strategies extend beyond the SSC framework: one enables rapid RCD fault diagnosis and repair, while the other employs an observer-based method to estimate angular velocities and maintain stability under partial actuator failure. Numerical simulations validate the robustness, efficiency, and resilience of these control strategies across diverse mission scenarios. This research establishes a comprehensive and adaptable control framework, enhancing the feasibility and reliability of advanced low-thrust missions aimed at scientific exploration, autonomous operation, and sustainable infrastructure in deep space.
Questa tesi presenta strategie di controllo integrate per affrontare le sfide dell’accoppiamento orbita-assetto nei veicoli spaziali a bassa spinta, con applicazioni in missioni verso asteroidi e nelle vele solari. Tali missioni stanno acquisendo crescente rilevanza scientifica ed economica, in quanto abilitano esplorazioni di corpi minori, operazioni di difesa planetaria, sfruttamento delle risorse asteroidali e implementazione di piattaforme di calcolo spaziali su larga scala. L’efficienza del carburante, l’elevata autonomia e la precisione nella navigazione rendono necessarie strategie di controllo avanzate in grado di operare in ambienti fortemente accoppiati e con risorse limitate. Un nuovo quadro di classificazione dell’accoppiamento orbita-assetto viene introdotto, suddividendo il problema in tre categorie: (1) accoppiamento indotto da perturbazioni esterne, come la pressione di radiazione solare (SRP) e le influenze gravitazionali; (2) accoppiamento legato alla configurazione del veicolo spaziale, inclusi strutture flessibili, vibrazioni e spostamento del propellente; e (3) accoppiamento derivante dallo scenario operativo, che si manifesta in operazioni ravvicinate, rapporti elevati superficie-massa o configurazioni sincrone. Cinque studi vengono condotti per affrontare progressivamente tali sfide. Per le missioni asteroidali, una strategia di controllo a eventi con barriere gestisce la velocità radiale per mantenere il veicolo spaziale entro un raggio orbitale prefissato, combinandosi con un controllo dell’assetto a eventi sigmoide per stabilizzare i propulsori. Inoltre, una modalità di mantenimento orbitale a trigger ibrido affronta l’accoppiamento significativo in veicoli spaziali sottoattuati, integrando manovre a grande angolo con un criterio decisionale ibrido. Nel caso delle vele solari, l’accoppiamento orbita-assetto è amplificato dall’uso estensivo dei dispositivi di controllo della riflettività (RCD). Per affrontare ciò, vengono proposte tre soluzioni: (i) una strategia di controllo a superfici di scorrimento per il Supercomputer a Vela Solare (SSC), che consente il puntamento stabile verso il Sole e la sincronizzazione con un satellite relè in orbita geostazionaria (GSO); (ii) un sistema tollerante ai guasti basato su diagnosi rapida degli RCD; e (iii) un metodo basato su osservatori per stimare la velocità angolare e mantenere la stabilità in presenza di guasti parziali. Le simulazioni numeriche dimostrano l’efficacia, robustezza e resilienza delle strategie proposte in diversi scenari missione. Il lavoro fornisce un quadro sistematico per il controllo di veicoli spaziali a bassa spinta, potenziando la loro capacità operativa in missioni spaziali complesse e profondamente accoppiate.
Integrated control strategies for low-thrust spacecraft with orbit-attitude coupling: applications to asteroid missions and solar sails
XIE, HONGYI
2024/2025
Abstract
This thesis presents integrated control strategies to address orbit-attitude coupling challenges in low-thrust spacecraft, with applications to asteroid missions and solar sails. These missions are of increasing scientific and economic importance, ranging from planetary defense and asteroid resource utilization to long-duration observation and space-based high energy-consuming big data computation at libration points. Given their reliance on fuel efficiency, autonomy, and precise guidance, such missions demand advanced control schemes capable of managing tightly coupled dynamics under sensing and actuation constraints. A novel classification framework is introduced to categorize orbit-attitude coupling into three types: (1) coupling induced by external perturbations, such as solar radiation pressure (SRP) and gravitational influences; (2) coupling resulting from spacecraft configuration, including flexible structures, vibrations, and fuel sloshing; and (3) mission scenario-driven coupling, which arises in close-proximity operations, high area-to-mass ratios, or synchronized configurations. Five studies are conducted, each addressing orbit-attitude coupling with increasing complexity. For asteroid missions, a barrier-based event-triggered control scheme confines the spacecraft within a designated orbital radius by managing radial velocity while employing a sigmoid event-triggered attitude control for thruster stabilization. Additionally, a hybrid-triggered station-keeping approach mitigates significant orbit-attitude coupling in underactuated spacecraft with three degrees of freedom (DOF) in attitude control and one DOF in orbital control, integrating large-angle maneuvers with hybrid-triggered decision-making to ensure precise orbital radius control near the asteroid. In solar sail applications, orbit-attitude coupling is particularly pronounced due to the sail’s reliance on attitude control for trajectory adjustments, amplified external disturbances, and complex dynamics from extensive Reflectivity Control Device (RCD) usage. To address these challenges, three key contributions are made. First, for the Solar Sail Supercomputer (SSC) concept, a sliding-mode control strategy synchronizes the sail’s orientation with a relay satellite in Geostationary Orbit (GSO) while stabilizing its Z-axis toward the Sun to ensure uninterrupted data transmission at the Earth-Sun-SRP L1 point. Additionally, two fault-tolerant control strategies extend beyond the SSC framework: one enables rapid RCD fault diagnosis and repair, while the other employs an observer-based method to estimate angular velocities and maintain stability under partial actuator failure. Numerical simulations validate the robustness, efficiency, and resilience of these control strategies across diverse mission scenarios. This research establishes a comprehensive and adaptable control framework, enhancing the feasibility and reliability of advanced low-thrust missions aimed at scientific exploration, autonomous operation, and sustainable infrastructure in deep space.| File | Dimensione | Formato | |
|---|---|---|---|
|
phdthesisxie2025final.pdf
accessibile in internet per tutti
Dimensione
8.47 MB
Formato
Adobe PDF
|
8.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239097