The increasing demand for safer and more efficient urban mobility has driven advancements in Cooperative Intelligent Transportation Systems (C-ITS), which leverage vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication to enhance Advanced Driver Assistance Systems (ADAS). This thesis explores the development and implementation of Cooperative ADAS (C-ADAS) in urban scenarios, addressing key challenges such as vehicle localization, communication latency, and real-world control logic deployment. A major contribution of this doctoral research is the analysis and compensation of communication delays in safety-critical applications, particularly Cooperative-Automatic Emergency Braking (C-AEB) and vehicle teleoperation. Experimental results show that end-to-end (E2E) latency in 5G-based V2X communication can reach 200 ms, significantly impacting control performance. To mitigate this, a predictive compensation strategy for vehicle teleoperation is proposed, while an assessment of delay effects on C-AEB highlights potential risk reduction strategies. Additionally, this thesis presents and experimentally tests cooperative localization techniques, both onboard and infrastructure-side. Onboard sensor fusion achieves position accuracy below 0.3 m in urban environments, while roadside camera-based localization ensures 95% detection reliability. These advancements enhance perception in urban areas, where GPS outages and occlusions are common. Another key contribution is the design and implementation of a V2I-enabled Green Light Optimal Speed Advisor (GLOSA) system for public transport. Experimental tests in Milan’s trolleybus network demonstrate a potential 26% reduction in energy consumption. Furthermore, a comparative analysis of rule-based and Non-linear Model Predictive Control (NMPC) approaches provides insights into the benefits of an Optimal Control Problem (OCP) solution.
La domanda crescente per una mobilità urbana più sicura ed efficiente ha favorito lo sviluppo dei Sistemi di Trasporto Intelligenti Cooperativi (C-ITS), che sfruttano la comunicazione veicolo-veicolo (V2V) e veicolo-infrastruttura (V2I) per migliorare i Sistemi Avanzati di Assistenza alla Guida (ADAS). Questa tesi indaga lo sviluppo di sistemi ADAS cooperativi (C-ADAS) in ambiente urbano, affrontando sfide chiave come la localizzazione dei veicoli, la latenza nella comunicazione e l'implementazione delle logiche di controllo nel applicazioni reali. Un contributo significativo di questa ricerca di dottorato riguarda la compensazione dei ritardi di comunicazione in applicazioni critiche per la sicurezza, in particolare la Frenata Automatica di Emergenza Cooperativa (C-AEB) e la guida da remoto. I risultati sperimentali indicano che la latenza end-to-end (E2E) nella comunicazione V2X basata su 5G può raggiungere i 200 ms, influenzando significativamente le prestazioni. Per mitigare questo effetto, viene proposta una strategia di compensazione per la teleguida, mentre l'analisi degli effetti del ritardo su un sistema C-AEB evidenzia comunque una potenziale riduzione del rischio. Inoltre, questa tesi presenta e valida sperimentalmente tecniche di localizzazione cooperativa, sia a bordo del veicolo che lato infrastruttura. La tecnica si sensor fusion a bordo veicolo consente di limitare l'errore di posizionamento sotto i 0,3 m in ambienti urbani, mentre la localizzazione basata su telecamere a bordo strada garantisce un'affidabilità del rilevamento del 95%. Un ulteriore contributo chiave è la sviluppo di un sistema Green Light Optimal Speed Advisor (GLOSA) abilitato dalla comunicazione V2I per il trasporto pubblico. Le prove sperimentali condotte sulla rete filoviaria di Milano dimostrano una potenziale riduzione del 26% dei consumi. Infine, un'analisi comparativa tra approcci rule-based e Controllo Predittivo Non Lineare (NMPC) fornisce spunti sui benefici derivanti dalla soluzione di un Problema di Controllo Ottimo (OCP).
Cooperative advanced driver assistance systems in urban scenario leveraging vehicle communication
Vignarca, Daniele
2024/2025
Abstract
The increasing demand for safer and more efficient urban mobility has driven advancements in Cooperative Intelligent Transportation Systems (C-ITS), which leverage vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication to enhance Advanced Driver Assistance Systems (ADAS). This thesis explores the development and implementation of Cooperative ADAS (C-ADAS) in urban scenarios, addressing key challenges such as vehicle localization, communication latency, and real-world control logic deployment. A major contribution of this doctoral research is the analysis and compensation of communication delays in safety-critical applications, particularly Cooperative-Automatic Emergency Braking (C-AEB) and vehicle teleoperation. Experimental results show that end-to-end (E2E) latency in 5G-based V2X communication can reach 200 ms, significantly impacting control performance. To mitigate this, a predictive compensation strategy for vehicle teleoperation is proposed, while an assessment of delay effects on C-AEB highlights potential risk reduction strategies. Additionally, this thesis presents and experimentally tests cooperative localization techniques, both onboard and infrastructure-side. Onboard sensor fusion achieves position accuracy below 0.3 m in urban environments, while roadside camera-based localization ensures 95% detection reliability. These advancements enhance perception in urban areas, where GPS outages and occlusions are common. Another key contribution is the design and implementation of a V2I-enabled Green Light Optimal Speed Advisor (GLOSA) system for public transport. Experimental tests in Milan’s trolleybus network demonstrate a potential 26% reduction in energy consumption. Furthermore, a comparative analysis of rule-based and Non-linear Model Predictive Control (NMPC) approaches provides insights into the benefits of an Optimal Control Problem (OCP) solution.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_Thesis_DV_final_rev.pdf
non accessibile
Descrizione: PhD_Thesis_Vignarca
Dimensione
30.67 MB
Formato
Adobe PDF
|
30.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239137