This thesis investigates the behaviour of adiabatic and isothermal fixed-bed adiabatic reactors used in CO₂ methanation processes through a multi-scale modelling approach under both steady-state and transient conditions. Three spatial discretization levels, i.e., 0D, 1D, and 2D were developed and implemented in COMSOL Multiphysics®, incorporating detailed mass, momentum, and heat transport with Ni/Al₂O₃ as catalyst and stoichiometric 4H₂:CO₂ inlet feed. First, the validation of a heat exchange fixed bed reactor based on literature is carried out. As nowadays the information available on this topic is not abundant, this step was made to ensure that the following models achieve reliable results. Afterwards, once the model is validated in 0D, 1D and 2D, the isothermal and adiabatic reactors are built in 1D and 2D steady state and transient operation. While the 0D and 1D models estimate average reactor behaviour, the 2D axisymmetric model reveals more pronounced local phenomena. Notably, the maximum temperature reached increases with model dimensionality, with the 2D model exhibiting the highest hotspot for the adiabatic reactor of ≈700 °C and a temperature difference between the centre and the isothermal wall reactor of 20°C, followed by the 1D and 0D models. This is due to localized heat accumulation that lower-dimensional models are unable to resolve. Transient simulations were conducted by applying step changes to the inlet flow rate. Results show that the adiabatic reactor exhibits asymmetric responses depending on whether the flow is increased or decreased, leading to phenomena such as early hotspot formation and transient conversion drops. In contrast, the isothermal configuration demonstrated greater dynamic stability and faster recovery to steady state after perturbations, suggesting its suitability under fluctuating renewable feed conditions. Moreover, the isothermal reactor sets in between 2 – 3 seconds, while the adiabatic in between 4 – 5 seconds for + 60% surge and 5 -8 seconds for – 60% dip. Finally, a comparison between Power Law kinetics and Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics underscores the sensitivity of reaction rates to adsorption equilibria and temperature. These results provide critical insights into reactor design trade-offs.
Questa tesi analizza il comportamento di reattori a letto fisso adiabatici e isotermici utilizzati nei processi di metanazione della CO₂, attraverso un approccio di modellazione multi-scala in condizioni sia stazionarie che transitorie. Sono stati sviluppati e implementati in COMSOL Multiphysics® tre livelli di discretizzazione spaziale, ovvero 0D, 1D e 2D, includendo il trasporto dettagliato di massa, quantità di moto e calore, utilizzando Ni/Al₂O₃ come catalizzatore e un’alimentazione stechiometrica 4H₂:CO₂. In primo luogo, è stata effettuata la validazione di un reattore a letto fisso con scambio termico basata sulla letteratura. Poiché attualmente le informazioni disponibili su questo argomento non sono abbondanti, questo passaggio è stato eseguito per garantire che i modelli successivi producessero risultati affidabili. Successivamente, una volta convalidato il modello in 0D, 1D e 2D, i reattori isotermico e adiabatico sono stati costruiti e analizzati in modalità stazionaria e transitoria nei modelli 1D e 2D. Mentre i modelli 0D e 1D stimano il comportamento medio del reattore, il modello assialsimmetrico 2D rivela fenomeni locali più marcati. In particolare, la temperatura massima raggiunta aumenta con la dimensionalità del modello: il modello 2D presenta il punto caldo più elevato per il reattore adiabatico, pari a circa 700 °C, e una differenza di temperatura di 20 °C tra il centro e la parete isotermica, seguito dai modelli 1D e 0D. Questo è dovuto all’accumulo localizzato di calore che i modelli a dimensioni inferiori non riescono a catturare. Le simulazioni transitorie sono state condotte applicando variazioni a gradino della portata in ingresso. I risultati mostrano che il reattore adiabatico presenta risposte asimmetriche a seconda che la portata venga aumentata o diminuita, portando a fenomeni come la formazione precoce di hotspot e cali temporanei di conversione. Al contrario, la configurazione isotermica ha dimostrato una maggiore stabilità dinamica e un recupero più rapido allo stato stazionario dopo le perturbazioni, suggerendo la sua idoneità in condizioni di alimentazione rinnovabile fluttuante. Inoltre, il reattore isotermico si stabilizza tra i 2 e i 3 secondi, mentre quello adiabatico tra i 4 e i 5 secondi per un aumento del 60% e tra i 5 e gli 8 secondi per una diminuzione del 60%. Infine, un confronto tra la cinetica di tipo Power Law e quella di Langmuir-Hinshelwood-Hougen-Watson (LHHW) mette in evidenza la sensibilità della velocità di reazione agli equilibri di adsorbimento e alla temperatura. Questi risultati offrono spunti critici per i compromessi nella progettazione dei reattori.
Thermal and mass flow dynamics in catalyst beds: comparing isothermal and adiabatic reactors under variable renewable energy loads applied in methanation process
MATTENET, MICHELLE DENISE
2024/2025
Abstract
This thesis investigates the behaviour of adiabatic and isothermal fixed-bed adiabatic reactors used in CO₂ methanation processes through a multi-scale modelling approach under both steady-state and transient conditions. Three spatial discretization levels, i.e., 0D, 1D, and 2D were developed and implemented in COMSOL Multiphysics®, incorporating detailed mass, momentum, and heat transport with Ni/Al₂O₃ as catalyst and stoichiometric 4H₂:CO₂ inlet feed. First, the validation of a heat exchange fixed bed reactor based on literature is carried out. As nowadays the information available on this topic is not abundant, this step was made to ensure that the following models achieve reliable results. Afterwards, once the model is validated in 0D, 1D and 2D, the isothermal and adiabatic reactors are built in 1D and 2D steady state and transient operation. While the 0D and 1D models estimate average reactor behaviour, the 2D axisymmetric model reveals more pronounced local phenomena. Notably, the maximum temperature reached increases with model dimensionality, with the 2D model exhibiting the highest hotspot for the adiabatic reactor of ≈700 °C and a temperature difference between the centre and the isothermal wall reactor of 20°C, followed by the 1D and 0D models. This is due to localized heat accumulation that lower-dimensional models are unable to resolve. Transient simulations were conducted by applying step changes to the inlet flow rate. Results show that the adiabatic reactor exhibits asymmetric responses depending on whether the flow is increased or decreased, leading to phenomena such as early hotspot formation and transient conversion drops. In contrast, the isothermal configuration demonstrated greater dynamic stability and faster recovery to steady state after perturbations, suggesting its suitability under fluctuating renewable feed conditions. Moreover, the isothermal reactor sets in between 2 – 3 seconds, while the adiabatic in between 4 – 5 seconds for + 60% surge and 5 -8 seconds for – 60% dip. Finally, a comparison between Power Law kinetics and Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics underscores the sensitivity of reaction rates to adsorption equilibria and temperature. These results provide critical insights into reactor design trade-offs.File | Dimensione | Formato | |
---|---|---|---|
Msc._Thesis_Michelle_Denise_Mattenet.pdf
non accessibile
Dimensione
4.06 MB
Formato
Adobe PDF
|
4.06 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Michelle_Denise_Mattenet.pdf
non accessibile
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239177