Multimorbidity, defined as the coexistence of two or more chronic diseases, presents a growing challenge for healthcare systems. In this research, the mortality risk associated with five multimorbidity clusters identified in the Danish adult population Allergies (ALL), Chronic Heart Conditions (CHC), Hypercholesterolemia (CHL), Diabetes (DIA), and Musculoskeletal and Psychiatric Conditions (M-P) was assessed through the application of survival analysis. Two extended Cox proportional hazards models were estimated using different time scales (time-on-study and attained age), allowing for a broader understanding of the impact of cluster membership on mortality, as well as the influence of sex and educational level. The results suggest that the M-P cluster includes individuals with the highest relative risk of death, although the CHC cluster shows the highest frequency of transitions to death. Furthermore, individuals with higher educational attainment exhibit lower hazard ratios, indicating that healthier lifestyles and regular health check-ups may improve disease management and influence mortality risk through earlier detection. Aware of the limitations of the estimated models, particular attention was paid to the interpretation of results. Additionally, multistate models are proposed as a potential future direction to study disease progression in greater depth. These findings emphasize the importance of preventive strategies and targeted healthcare policies to reduce multimorbidity-related risks.
La multimorbilità, definita come la coesistenza di due o più malattie croniche, rappresenta una sfida crescente per i sistemi sanitari. In questo studio, il rischio di mortalità associato a cinque cluster di multimorbilità identificati nella popolazione adulta danese Allergie (ALL), Condizioni Cardiache Croniche (CHC), Ipercolesterolemia (CHL), Diabete (DIA) e Condizioni Muscoloscheletriche e Psichiatriche (M-P) è stato analizzato mediante tecniche di survival analysis. Sono stati stimati due modelli estesi di Cox con differenti scale temporali (tempo nello studio e età raggiunta), per comprendere più a fondo l’impatto dell’appartenenza al cluster sulla mortalità, nonché l’influenza del sesso e del livello di istruzione. I risultati suggeriscono che il cluster M-P comprende gli individui con il rischio relativo di morte più elevato, sebbene il cluster CHC mostri la frequenza più alta di transizioni verso il decesso. Inoltre, gli individui con un livello di istruzione più alto presentano hazard ratio inferiori, indicando che uno stile di vita più sano e controlli medici regolari possono migliorare la gestione delle malattie e influenzare il rischio di mortalità attraverso una diagnosi precoce. Consapevoli dei limiti dei modelli stimati, è stata posta particolare attenzione all’interpretazione dei risultati. Inoltre, si propone l’utilizzo di modelli multistato come possibile estensione futura per studiare in modo più approfondito l’evoluzione delle condizioni croniche. Questi risultati sottolineano l’importanza di strategie preventive e politiche sanitarie mirate per ridurre i rischi associati alla multimorbilità.
Extended cox models with time-dependent variables for mortality risk analysis in multimorbid danish aldut
Dakouri, Ange
2024/2025
Abstract
Multimorbidity, defined as the coexistence of two or more chronic diseases, presents a growing challenge for healthcare systems. In this research, the mortality risk associated with five multimorbidity clusters identified in the Danish adult population Allergies (ALL), Chronic Heart Conditions (CHC), Hypercholesterolemia (CHL), Diabetes (DIA), and Musculoskeletal and Psychiatric Conditions (M-P) was assessed through the application of survival analysis. Two extended Cox proportional hazards models were estimated using different time scales (time-on-study and attained age), allowing for a broader understanding of the impact of cluster membership on mortality, as well as the influence of sex and educational level. The results suggest that the M-P cluster includes individuals with the highest relative risk of death, although the CHC cluster shows the highest frequency of transitions to death. Furthermore, individuals with higher educational attainment exhibit lower hazard ratios, indicating that healthier lifestyles and regular health check-ups may improve disease management and influence mortality risk through earlier detection. Aware of the limitations of the estimated models, particular attention was paid to the interpretation of results. Additionally, multistate models are proposed as a potential future direction to study disease progression in greater depth. These findings emphasize the importance of preventive strategies and targeted healthcare policies to reduce multimorbidity-related risks.File | Dimensione | Formato | |
---|---|---|---|
Dakouri_Thesis.pdf
accessibile in internet per tutti
Dimensione
3.35 MB
Formato
Adobe PDF
|
3.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239320