This thesis, carried out in collaboration with the company "T4i - Technology for Propul- sion and Innovation", presents a numerical investigation into advanced thermal manage- ment solutions for power inverters, a critical component in Electric Pump-Fed Liquid Propellant Rocket Engines. The increasing power density of modern electronics poses a significant challenge for conventional cooling technologies. This study explores the re- placement of traditional finned heat sinks with architected cellular structures based on Triply Periodic Minimal Surfaces, enabled by additive manufacturing. A comparative analysis was conducted using Computational Fluid Dynamics (CFD) to evaluate the thermal-hydraulic performance of four distinct TPMS lattice structures—Sheet Gyroid, Solid Gyroid, Sheet Diamond, and Solid Diamond—against a baseline finned heat sink design. A Conjugate Heat Transfer (CHT) model was employed, simulating the flow of Hydrazine coolant through an Aluminum heat sink subjected to a constant thermal load. The results definitively demonstrate that all TPMS configurations offer vastly superior thermal performance, achieving significantly higher heat transfer rates and maintaining component temperatures below the critical 60°C operational limit, a threshold the con- ventional design failed to meet under certain conditions. This enhancement is attributed to the intrinsically high surface-area-to-volume ratio of TPMS structures and their ability to induce complex, tortuous flow paths that disrupt thermal boundary layers and promote turbulent mixing. However, this thermal benefit is accompanied by a significant hydraulic penalty, with TPMS structures exhibiting a substantially higher pressure drop. The anal- ysis highlights a key design trade-off: ’Sheet’ networks provide maximum heat transfer but at the cost of the highest flow resistance, while ’Solid’ networks offer a more balanced solution. Among the configurations tested, the Solid-Gyroid structure was identified as having the most optimal overall thermal-hydraulic performance. The findings confirm that TPMS-based heat sinks represent a highly effective solution for next-generation thermal management, allowing for performance to be precisely tailored to the specific constraints of an application.
Questa tesi, svolta in collaborazione con l’azienda "T4i - Technology for Propulsion and Innovation", presenta un’indagine numerica su soluzioni avanzate di gestione termica per inverter di potenza, un componente critico negli endoreattori a propellente liquido al- imentati da elettropompe (Electric Pump-Fed Liquid Propellant Rocket Engines). La crescente densità di potenza dell’elettronica moderna rappresenta una sfida significativa per le tecnologie di raffreddamento convenzionali. Questo studio esplora la sostituzione dei tradizionali dissipatori di calore alettati con strutture cellulari architettate basate su Superfici Minime Tripelmente Periodiche (TPMS), rese possibili dalla produzione addi- tiva. È stata condotta un’analisi comparativa mediante Fluidodinamica Computazionale (CFD) per valutare le prestazioni termo-idrauliche di quattro distinte strutture a reticolo TPMS — Sheet Gyroid, Solid Gyroid, Sheet Diamond e Solid Diamond — rispetto a un dissipa- tore di calore alettato di riferimento. È stato impiegato un modello di Scambio Termico Coniugato (CHT), simulando il flusso di Idrazina come refrigerante attraverso un dissi- patore in Alluminio sottoposto a un carico termico costante. I risultati dimostrano in modo definitivo che tutte le configurazioni TPMS offrono prestazioni termiche notevolmente superiori, raggiungendo tassi di scambio termico significativamente più elevati e mantenendo le temperature dei componenti al di sotto del limite operativo critico di 60°C, soglia che il design convenzionale non è riuscito a rispettare in determinate condizioni. Questo miglioramento è attribuito all’intrinseco elevato rapporto superficie- volume delle strutture TPMS e alla loro capacità di indurre percorsi di flusso complessi e tortuosi che rompono gli strati limite termici e promuovono la miscelazione turbolenta. Tuttavia, questo beneficio termico è accompagnato da una penalità idraulica significativa, con le strutture TPMS che mostrano una caduta di pressione sostanzialmente più alta. L’analisi evidenzia un compromesso progettuale chiave: le strutture di tipo ’Sheet’ for- niscono il massimo scambio termico ma al costo della più alta resistenza al flusso, mentre le strutture di tipo ’Solid’ offrono una soluzione più bilanciata. Tra le configurazioni tes- tate, la struttura Solid-Gyroid è stata identificata come quella con le migliori prestazioni termo-idrauliche complessive. I risultati confermano che i dissipatori di calore basati su TPMS rappresentano una soluzione altamente efficace per la gestione termica di nuova generazione, consentendo di adattare le prestazioni in modo preciso ai vincoli specifici di un’applicazione.
Thermal-hydraulic performance analysis of TPMS for heat sink in aerospace power electronics
Panzone, Andrea
2024/2025
Abstract
This thesis, carried out in collaboration with the company "T4i - Technology for Propul- sion and Innovation", presents a numerical investigation into advanced thermal manage- ment solutions for power inverters, a critical component in Electric Pump-Fed Liquid Propellant Rocket Engines. The increasing power density of modern electronics poses a significant challenge for conventional cooling technologies. This study explores the re- placement of traditional finned heat sinks with architected cellular structures based on Triply Periodic Minimal Surfaces, enabled by additive manufacturing. A comparative analysis was conducted using Computational Fluid Dynamics (CFD) to evaluate the thermal-hydraulic performance of four distinct TPMS lattice structures—Sheet Gyroid, Solid Gyroid, Sheet Diamond, and Solid Diamond—against a baseline finned heat sink design. A Conjugate Heat Transfer (CHT) model was employed, simulating the flow of Hydrazine coolant through an Aluminum heat sink subjected to a constant thermal load. The results definitively demonstrate that all TPMS configurations offer vastly superior thermal performance, achieving significantly higher heat transfer rates and maintaining component temperatures below the critical 60°C operational limit, a threshold the con- ventional design failed to meet under certain conditions. This enhancement is attributed to the intrinsically high surface-area-to-volume ratio of TPMS structures and their ability to induce complex, tortuous flow paths that disrupt thermal boundary layers and promote turbulent mixing. However, this thermal benefit is accompanied by a significant hydraulic penalty, with TPMS structures exhibiting a substantially higher pressure drop. The anal- ysis highlights a key design trade-off: ’Sheet’ networks provide maximum heat transfer but at the cost of the highest flow resistance, while ’Solid’ networks offer a more balanced solution. Among the configurations tested, the Solid-Gyroid structure was identified as having the most optimal overall thermal-hydraulic performance. The findings confirm that TPMS-based heat sinks represent a highly effective solution for next-generation thermal management, allowing for performance to be precisely tailored to the specific constraints of an application.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Panzone.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della Tesi
Dimensione
14.53 MB
Formato
Adobe PDF
|
14.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239486