The accumulation of granular materials such as snow and sand on road barriers poses a significant safety threat by altering vehicle dynamics upon impact and degrading road conditions during adverse weather conditions. This phenomenon must be understood to improve road safety and infrastructure design. Due to the complexity of granular material behavior and the variability of environmental conditions, experimentation alone is often ineffective. Therefore, this thesis adopts advanced numerical analysis to simulate and analyze the interaction between road barriers and sand, using the finite element software LS-DYNA. The research focuses on two common numerical methodologies used in the simulation of granular media, namely Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM). The schemes were implemented and verified to evaluate their ability to simulate realistic sand deposition profiles. The methodology involves in-depth analysis of material dynamics, barrier shape and corresponding modeling approaches. Model cali- bration is based on empirical information, such as natural angle of repose, and analysis of mesh quality and boundary conditions. The simulations of two typical barrier geometries (New Jersey and double-sided) were carried out to examine the impact of geometry on sand accumulation. Results reveal that while SPH provides intricate particle dynamics, DEM results in more effective and stable simulations, especially for large-scale simula- tions. Proven models provide a predictive analysis of the impact of barrier shape on sand ramp development and provide design recommendations to mitigate safety risks.
L'accumulo di materiali granulari come neve e sabbia sulle barriere stradali rappresenta una minaccia significativa per la sicurezza, in quanto altera la dinamica dei veicoli al momento dell'impatto e degrada le condizioni stradali in caso di condizioni meteorologiche avverse. Questo fenomeno deve essere compreso per migliorare la sicurezza stradale e la progettazione delle infrastrutture. A causa della complessità del comportamento dei materiali granulari e della variabilità delle condizioni ambientali, la sola sperimentazione è spesso inefficace. Pertanto, questa tesi adotta un'analisi numerica avanzata per simulare e analizzare l'interazione tra barriere stradali e sabbia, utilizzando il software agli elementi finiti LS-DYNA. La ricerca si concentra su due metodologie numeriche comuni utilizzate nella simulazione di mezzi granulari, ovvero Smoothed Particle Hydrodynamics (SPH) e Discrete Element Method (DEM). Gli schemi sono stati implementati e verificati per valutare la loro capacità di simulare profili realistici di deposizione della sabbia. La metodologia prevede un'analisi approfondita della dinamica dei materiali, della forma della barriera e dei corrispondenti approcci di modellazione. La calibrazione del modello si basa su informazioni empiriche, come l'angolo di riposo naturale, e sull'analisi della qualità della maglia e delle condizioni al contorno. Sono state effettuate simulazioni di due tipiche geometrie di barriera, New Jersey e bifacciale, per esaminare l'impatto della geometria sull'accumulo di sabbia. I risultati rivelano che, mentre l'SPH fornisce un'intricata dinamica delle particelle, il DEM produce simulazioni più efficaci e stabili, soprattutto per le simulazioni su larga scala. I modelli dimostrati forniscono un'analisi predittiva dell'impatto della forma della barriera sullo sviluppo della rampa di sabbia e forniscono raccomandazioni di progettazione per mitigare i rischi per la sicurezza.
LS-DYNA modelling of snow/sand buildups on road barries
ALDANA LOPERA, DANIEL ENRIQUE
2024/2025
Abstract
The accumulation of granular materials such as snow and sand on road barriers poses a significant safety threat by altering vehicle dynamics upon impact and degrading road conditions during adverse weather conditions. This phenomenon must be understood to improve road safety and infrastructure design. Due to the complexity of granular material behavior and the variability of environmental conditions, experimentation alone is often ineffective. Therefore, this thesis adopts advanced numerical analysis to simulate and analyze the interaction between road barriers and sand, using the finite element software LS-DYNA. The research focuses on two common numerical methodologies used in the simulation of granular media, namely Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM). The schemes were implemented and verified to evaluate their ability to simulate realistic sand deposition profiles. The methodology involves in-depth analysis of material dynamics, barrier shape and corresponding modeling approaches. Model cali- bration is based on empirical information, such as natural angle of repose, and analysis of mesh quality and boundary conditions. The simulations of two typical barrier geometries (New Jersey and double-sided) were carried out to examine the impact of geometry on sand accumulation. Results reveal that while SPH provides intricate particle dynamics, DEM results in more effective and stable simulations, especially for large-scale simula- tions. Proven models provide a predictive analysis of the impact of barrier shape on sand ramp development and provide design recommendations to mitigate safety risks.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_ALDANA.pdf
accessibile in internet per tutti
Dimensione
10.15 MB
Formato
Adobe PDF
|
10.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239520