To model pyroshocks in satellites and launch vehicles, a robust and computationally efficient framework about structural response to high frequency vibration is needed. The thesis investigates energy methods, collecting their hypotheses and simulation strategies. Among all the investigated methods, a preliminary choice is conducted to exclude the ones which are not suitable for pyroshock modeling. A 2 Degrees of Freedom mechanical oscillator, a rod and a beam are employed to solve impact and forced problems, in order to critically assess advantages and limits of each method. Simulations to test the average frequency approximation coming from the dissipation model hypothesized are conducted and a worsening behavior is found when the spectrum of excitation is widened. By comparing the results for different methods with the exact solution, the one giving the most accurate results is found. The energy method is able to analyze structures whose Equation of Motion can be described using the wave equation for the impact problem. The forced problem cannot be modeled correctly if it represents a harmonic problem, rather than an impulse one. To conclude, the thesis presents a workflow to extract key parameters for energy methods from a 3D beam, where an exact solution is not available, by solving a computationally less demanding problem. These parameters are compared with theoretical results, revealing discrepancies at high frequencies where the plane cross-section assumption is not valid. This workflow is applicable to more complex structures, offering an alternative to full Finite Element modeling.
Per modellare gli shock pirotecnici nei satelliti e nei lanciatori è necessario un framework robusto ed efficiente dal punto di vista computazionale per l'analisi della risposta strutturale alle vibrazioni ad alta frequenza. Questa tesi indaga i metodi energetici, raccogliendone le ipotesi e le strategie di simulazione. Tra tutti i metodi analizzati è effettuata una selezione preliminare per escludere quelli non adatti alla modellazione degli shock pirotecnici. Un oscillatore meccanico a 2 gradi di libertà, una barra e una trave sono utilizzati per risolvere problemi di impatto e forzati, al fine di valutare criticamente vantaggi e limiti di ciascun metodo. Simulazioni per testare l’approssimazione della frequenza media derivante dal modello di dissipazione ipotizzato evidenziano un peggioramento della soluzione all’aumentare dell’ampiezza dello spettro di eccitazione. Confrontando i risultati dei diversi metodi con la soluzione esatta, il metodo che fornisce i risultati più accurati è identificato e discusso. Il metodo energetico si dimostra in grado di analizzare strutture la cui equazione del moto può essere descritta tramite l’equazione delle onde, nel caso di problemi d'impatto. Tuttavia, esso non riesce a modellare correttamente problemi forzati di tipo armonico. Infine, la tesi presenta i passaggi per estrarre i parametri chiave per i metodi energetici a partire da un modello tridimensionale di trave, in assenza di una soluzione esatta, risolvendo un problema computazionalmente meno oneroso. Tali parametri sono confrontati con i risultati teorici, rivelando discrepanze alle alte frequenze, dove l’ipotesi di sezione piana non risulta più valida. Questo workflow è applicabile a strutture più complesse, offrendo un’alternativa alla modellazione completa con elementi finiti.
Comparison and critical assessment of energy methods and their dissipative model to solve free and forced vibration problems
Spinzi, Riccardo
2024/2025
Abstract
To model pyroshocks in satellites and launch vehicles, a robust and computationally efficient framework about structural response to high frequency vibration is needed. The thesis investigates energy methods, collecting their hypotheses and simulation strategies. Among all the investigated methods, a preliminary choice is conducted to exclude the ones which are not suitable for pyroshock modeling. A 2 Degrees of Freedom mechanical oscillator, a rod and a beam are employed to solve impact and forced problems, in order to critically assess advantages and limits of each method. Simulations to test the average frequency approximation coming from the dissipation model hypothesized are conducted and a worsening behavior is found when the spectrum of excitation is widened. By comparing the results for different methods with the exact solution, the one giving the most accurate results is found. The energy method is able to analyze structures whose Equation of Motion can be described using the wave equation for the impact problem. The forced problem cannot be modeled correctly if it represents a harmonic problem, rather than an impulse one. To conclude, the thesis presents a workflow to extract key parameters for energy methods from a 3D beam, where an exact solution is not available, by solving a computationally less demanding problem. These parameters are compared with theoretical results, revealing discrepancies at high frequencies where the plane cross-section assumption is not valid. This workflow is applicable to more complex structures, offering an alternative to full Finite Element modeling.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Spinzi_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
778.81 kB
Formato
Adobe PDF
|
778.81 kB | Adobe PDF | Visualizza/Apri |
2025_07_Spinzi_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Text of the thesis
Dimensione
5.91 MB
Formato
Adobe PDF
|
5.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239580