In the context of the global energy transition, underground hydrogen storage (UHS) represents a critical enabling technology for ensuring the integration of large-scale renewable energy and long-term energy security. However, subsurface microbial communities introduce additional operational challenges, as their activity can result in hydrogen consumption, the generation of impurities such as hydrogen sulfide or methane, microbiologically influenced corrosion (MIC), and modifications to reservoir properties, all of which carry significant economic implications. This study develops an integrated techno-economic model to assess the viability of UHS facilities under varying levels of microbial hydrogen consumption and losses. The analysis covers the three primary geological storage types: salt caverns (SC), depleted gas fields (DGF), and aquifers (Aq). For each storage type, projected cash flows were calculated using discounted cash flow (DCF) methodology, incorporating hydrogen loss mechanisms, purification requirements, mitigation strategies, and operational expenditures. The model also evaluates mitigation measures analyzing their impact on the costs. The results demonstrate that microbial activity has a significant impact on UHS economics. Salt caverns remain largely robust against microbial losses, requiring only limited purification under most scenarios. Depleted gas fields experience moderate economic penalties due to the need for continuous purification of methane and other contaminants, even in the absence of microbial activity. Aquifers exhibit the highest sensitivity, where elevated microbial activity can rapidly alter economic parameters due to substantial changes in purification infrastructure requirements. The analyses confirm that hydrogen losses can critically reduce project profitability, emphasizing the importance of early site characterization and preventive design. Microbial activity presents tangible risks; the study concludes that without proper scientific, engineering, and regulatory advancements, UHS' future as a solution for large-scale hydrogen deployment within future low-carbon energy systems could be jeopardized due to economic unviability.
Nel contesto della transizione energetica globale, lo stoccaggio sotterraneo di idrogeno (UHS) rappresenta una tecnologia abilitante cruciale per garantire l’integrazione su larga scala delle fonti rinnovabili e la sicurezza energetica di lungo periodo. Tuttavia, le comunità microbiche del sottosuolo introducono ulteriori sfide operative, poiché la loro attività può causare il consumo di idrogeno, la formazione di impurità come idrogeno solforato o metano, corrosione influenzata microbiologicamente (MIC) e modifiche alle proprietà del giacimento, con rilevanti implicazioni economiche. Questo studio presenta un modello tecnico-economico integrato per valutare la fattibilità di impianti UHS a differenti livelli di consumo microbico e perdita di idrogeno. L’analisi riguarda i tre principali tipi di stoccaggio geologico: caverne saline (SC), giacimenti di gas esauriti (DGF) e acquiferi (Aq). Per ciascun tipo di stoccaggio sono stati stimati i flussi di cassa previsti, tramite la metodologia del flusso di cassa scontato (DCF), includendo meccanismi di perdita di idrogeno, requisiti di purificazione, strategie di mitigazione e spese operative. Il modello valuta inoltre le misure di mitigazione analizzandone l’impatto sui costi. I risultati mostrano che l’attività microbica incide in modo significativo sull’economia dell’UHS. Le caverne saline si dimostrano in gran parte robuste rispetto alle perdite microbiche, richiedendo solo una purificazione limitata nella maggior parte degli scenari. I giacimenti di gas esauriti subiscono penalizzazioni economiche moderate, dovute alla necessità di purificare continuamente metano e altri contaminanti, anche in assenza di attività microbica. Gli acquiferi risultano i più sensibili: un’elevata attività microbica può alterare rapidamente i parametri economici a causa di sostanziali modifiche dell’infrastruttura di purificazione. Le analisi confermano che le perdite di idrogeno possono ridurre in modo critico la redditività dei progetti, evidenziando l’importanza di una caratterizzazione precoce del sito e di una progettazione preventiva. L’attività microbica costituisce un rischio concreto; lo studio conclude che, senza adeguati progressi scientifici, ingegneristici e normativi, il futuro dell’UHS potrebbe essere compromesso per mancanza di sostenibilità economica.
Techno-economic assessment of microbial activity in underground hydrogen storage
Dimuro Duckwitz, Victoria
2024/2025
Abstract
In the context of the global energy transition, underground hydrogen storage (UHS) represents a critical enabling technology for ensuring the integration of large-scale renewable energy and long-term energy security. However, subsurface microbial communities introduce additional operational challenges, as their activity can result in hydrogen consumption, the generation of impurities such as hydrogen sulfide or methane, microbiologically influenced corrosion (MIC), and modifications to reservoir properties, all of which carry significant economic implications. This study develops an integrated techno-economic model to assess the viability of UHS facilities under varying levels of microbial hydrogen consumption and losses. The analysis covers the three primary geological storage types: salt caverns (SC), depleted gas fields (DGF), and aquifers (Aq). For each storage type, projected cash flows were calculated using discounted cash flow (DCF) methodology, incorporating hydrogen loss mechanisms, purification requirements, mitigation strategies, and operational expenditures. The model also evaluates mitigation measures analyzing their impact on the costs. The results demonstrate that microbial activity has a significant impact on UHS economics. Salt caverns remain largely robust against microbial losses, requiring only limited purification under most scenarios. Depleted gas fields experience moderate economic penalties due to the need for continuous purification of methane and other contaminants, even in the absence of microbial activity. Aquifers exhibit the highest sensitivity, where elevated microbial activity can rapidly alter economic parameters due to substantial changes in purification infrastructure requirements. The analyses confirm that hydrogen losses can critically reduce project profitability, emphasizing the importance of early site characterization and preventive design. Microbial activity presents tangible risks; the study concludes that without proper scientific, engineering, and regulatory advancements, UHS' future as a solution for large-scale hydrogen deployment within future low-carbon energy systems could be jeopardized due to economic unviability.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Dimuro.pdf
solo utenti autorizzati a partire dal 20/06/2028
Descrizione: Thesis text
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri |
|
Executive_VDD.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
872.19 kB
Formato
Adobe PDF
|
872.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239611