Simulation procedures have become increasingly important in recent years in the field of vehicle development. These tools are not only valuable during the early design stages but also play a crucial role in the final phases of development, particularly in target cascading and performance verification. A robust and reliable simulation environment is a critical asset for any OEM, as it can significantly reduce development costs and minimize the need for extensive physical testing on proving grounds. This thesis presents the development and validation of a simulation software tool aimed at evaluating key performance indices of passenger vehicles. The tool focuses on analyses related to both ride comfort and handling performance, with particular emphasis on vehicle safety under demanding road conditions and compliance with European drivability standards. The vehicle model implemented in the software features 14 degrees of freedom (DOF). This structure enables a detailed representation of vehicle responses across a wide range of driving conditions, offering an effective trade-off between modeling and simulation effort versus the cost and time associated with experimental testing. The simulation framework supports the evaluation of numerous performance parameters and integrates optimization capabilities for aligning the vehicle's behavior with predefined dynamic targets. The accuracy and reliability of the developed software are ensured through a two-step validation process. First, the model was benchmarked against VI-CarRealTime, a widely recognized vehicle dynamics simulation platform, to verify the consistency of the setup and results. Second, the software outputs were compared with experimental measurements to establish correlation with real-world data. This validated simulation framework provides a powerful and adaptable tool for analyzing and optimizing vehicle dynamics. It offers a solid foundation for further integration into virtual development processes and automated design cycles.
Le procedure di simulazione hanno acquisito crescente importanza negli ultimi anni nello sviluppo veicolare. Questi strumenti sono preziosi non solo nelle fasi iniziali del progetto, ma anche in quelle finali, in particolare per il target cascading e la verifica delle prestazioni. Un ambiente di simulazione robusto e affidabile è un asset fondamentale per ogni OEM, poiché consente di ridurre significativamente i costi di sviluppo e di limitare i test fisici su pista. Questa tesi presenta lo sviluppo e la validazione di un software di simulazione volto a valutare gli indici prestazionali chiave dei veicoli passeggeri. L’attenzione è rivolta all’analisi del comfort di marcia e della dinamica laterale, con particolare enfasi sulla sicurezza del veicolo in condizioni stradali critiche e sulla conformità agli standard europei di guidabilità. Il modello implementato nel software presenta 14 gradi di libertà (DOF), permettendo una rappresentazione dettagliata delle risposte dinamiche del veicolo in diverse condizioni di guida. Ciò consente un equilibrio efficace tra sforzo di modellazione/simulazione e costi e tempi legati alla sperimentazione. Il framework consente la valutazione di numerosi parametri prestazionali e integra funzionalità di ottimizzazione per l’allineamento ai target dinamici prefissati. L’accuratezza e l’affidabilità del software sono garantite da una validazione in due fasi: dapprima tramite confronto con VI-CarRealTime, piattaforma di riferimento per la simulazione veicolare, e successivamente mediante confronto con dati sperimentali reali. Il framework risultante rappresenta uno strumento potente e flessibile per l’analisi e l’ottimizzazione della dinamica veicolare, costituendo una solida base per l’integrazione nei processi di sviluppo virtuale e nei cicli di progettazione automatizzati.
Development and validation of a vehicle dynamics simulation software
Raptis, Panagiotis
2024/2025
Abstract
Simulation procedures have become increasingly important in recent years in the field of vehicle development. These tools are not only valuable during the early design stages but also play a crucial role in the final phases of development, particularly in target cascading and performance verification. A robust and reliable simulation environment is a critical asset for any OEM, as it can significantly reduce development costs and minimize the need for extensive physical testing on proving grounds. This thesis presents the development and validation of a simulation software tool aimed at evaluating key performance indices of passenger vehicles. The tool focuses on analyses related to both ride comfort and handling performance, with particular emphasis on vehicle safety under demanding road conditions and compliance with European drivability standards. The vehicle model implemented in the software features 14 degrees of freedom (DOF). This structure enables a detailed representation of vehicle responses across a wide range of driving conditions, offering an effective trade-off between modeling and simulation effort versus the cost and time associated with experimental testing. The simulation framework supports the evaluation of numerous performance parameters and integrates optimization capabilities for aligning the vehicle's behavior with predefined dynamic targets. The accuracy and reliability of the developed software are ensured through a two-step validation process. First, the model was benchmarked against VI-CarRealTime, a widely recognized vehicle dynamics simulation platform, to verify the consistency of the setup and results. Second, the software outputs were compared with experimental measurements to establish correlation with real-world data. This validated simulation framework provides a powerful and adaptable tool for analyzing and optimizing vehicle dynamics. It offers a solid foundation for further integration into virtual development processes and automated design cycles.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Raptis.pdf
non accessibile
Dimensione
17.35 MB
Formato
Adobe PDF
|
17.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239618