The aerodynamics of High-Speed Trains (HST) has become a key concern in modern railway engineering, particularly in relation to the effects occurring in confined environments. This study aims to analyze the aerodynamic phenomena generated by the transit of HST, comparing the flow behavior in open air and within a tunnel. The investigation was carried out through incompressible URANS numerical simulations, coupled with a k −ωSST turbulence model, on both real (ETR1000 and ETR675) and simplified train configurations. The objective is to assess the influence of key geometric components on pressure, slipstream and aerodynamic drag. The numerical model with ETR1000 was validated in the open air scenario, by comparing the simulated slipstream curves with full-scale experimental data, processed through the Ensemble Averaging technique, in accordance with European standards. The sensitivity analysis revealed that geometric complexity significantly affects wake development, pressure distribution and aerodynamic resistance. These effects are further amplified inside the tunnel, where geometric confine ment induces reverse flow phenomena and alters the wake topology compared to the open air scenario. Furthermore, the concept of an effective cross-sectional area was considered to qualitatively represent the local flow constriction induced by boundary layer growth. This effect, varying across different geometrical configurations, contributes to a change in the local blockage ratio and significantly influences both the pressure distribution and the aerodynamic drag. Finally, spectral analysis showed that the presence of tunnel walls leads to an increase in vortex shedding frequency, a phenomenon attributed to a thinner and more gradually developed boundary layer than in the open-air case.
L’aerodinamica dei treni ad alta velocità rappresenta un ambito di crescente importanza nell’ingegneria ferroviaria moderna, soprattutto in relazione agli effetti che si manifestano in ambienti confinati. Il presente lavoro si propone di analizzare diversi fenomeni aerodinamici generati dal passaggio dei treni ad alta velocità, confrontando il comportamento del flusso in campo aperto e all’interno di una galleria. L’indagine è stata condotta mediante simulazioni numeriche URANS incomprimibili, accoppiate a un modello di turbolenza k–ω SST, su configurazioni reali (ETR1000 ed ETR675) e semplificate dei convogli. L’obiettivo è quello di valutare l’influenza delle principali componenti geometriche sulla pressione, sullo slipstream e sulla resistenza aerodinamica. Il modello numerico è stato validato nel contesto open air- ETR1000, attraverso il confronto tra le curve di slipstream ottenute e quelle sperimentali full-scale, elaborate mediante tecnica di Ensemble Averaging, in accordo con quanto previsto dalle normative Europee. L’analisi di sensitività ha evidenziato come la complessità geometrica influenzi significativamente lo sviluppo della scia, la distribuzione di pressione e la resistenza aerodinamica, con effetti amplificati all’interno del tunnel, dove il confinamento induce fenomeni di reverse flow e altera la topologia della scia rispetto allo scenario in campo aperto. Inoltre, è stato considerato il concetto di sezione efficace per rappresentare in modo qualitativo la riduzione locale della sezione utile al flusso dovuta allo sviluppo dello strato limite. Questo effetto, che varia a seconda delle configurazioni geometriche, contribuisce a modificare il rapporto di bloccaggio locale e influisce in modo significativo sia sulla distribuzione di pressione sia sulla resistenza aerodinamica. Infine, un’analisi spettrale ha mostrato come l’effetto delle pareti del tunnel comporti un incremento della frequenza di distacco dei vortici, fenomeno attribuibile ad uno strato limite più sottile e più gradualmente sviluppato rispetto a quello in campo aperto.
Geometry details of high-speed trains: effects on slipstream, pressure and wake topology slipstream; pressure and wake topology
Todaro, Francesco
2024/2025
Abstract
The aerodynamics of High-Speed Trains (HST) has become a key concern in modern railway engineering, particularly in relation to the effects occurring in confined environments. This study aims to analyze the aerodynamic phenomena generated by the transit of HST, comparing the flow behavior in open air and within a tunnel. The investigation was carried out through incompressible URANS numerical simulations, coupled with a k −ωSST turbulence model, on both real (ETR1000 and ETR675) and simplified train configurations. The objective is to assess the influence of key geometric components on pressure, slipstream and aerodynamic drag. The numerical model with ETR1000 was validated in the open air scenario, by comparing the simulated slipstream curves with full-scale experimental data, processed through the Ensemble Averaging technique, in accordance with European standards. The sensitivity analysis revealed that geometric complexity significantly affects wake development, pressure distribution and aerodynamic resistance. These effects are further amplified inside the tunnel, where geometric confine ment induces reverse flow phenomena and alters the wake topology compared to the open air scenario. Furthermore, the concept of an effective cross-sectional area was considered to qualitatively represent the local flow constriction induced by boundary layer growth. This effect, varying across different geometrical configurations, contributes to a change in the local blockage ratio and significantly influences both the pressure distribution and the aerodynamic drag. Finally, spectral analysis showed that the presence of tunnel walls leads to an increase in vortex shedding frequency, a phenomenon attributed to a thinner and more gradually developed boundary layer than in the open-air case.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Todaro_Tesi.pdf
solo utenti autorizzati a partire dal 01/07/2026
Dimensione
48.98 MB
Formato
Adobe PDF
|
48.98 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Todaro_Executive_Summary.pdf
solo utenti autorizzati a partire dal 01/07/2026
Descrizione: Executive summary
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239677