Cardiovascular diseases are the leading cause of global mortality, accounting for 8.9 million deaths annually. Despite remarkable advancements in imaging technologies, such as cardiac computed tomography and cardiac magnetic resonance, interpretation of these modalities still relies on subjective visual assessment by clinicians. In this framework, radiomics has gained high interest in the cardiovascular field offering a non-invasive solution aimed at extracting quantitative features from medical images, transforming visual information into numerical data that can be processed and interpreted through artificial intelligence methods. Despite demonstrated potential in disease classification, plaque characterization, and outcome prediction, radiomics still faces significant challenges to clinical integration, including poor reproducibility, lack of standardization, and limited robustness. Given these gaps, this thesis aims to develop and validate advanced methodological solutions for cardiac radiomics while investigating clinically relevant cardiovascular applications. The research focuses on three key methodological developments: (i) designing a standardized pipeline for cardiac radiomic model development with robust feature extraction and selection methods; (ii) implementing novel data augmentation strategies to overcome dataset size limitations; and (iii) defining a comprehensive framework for multimodal integration that combines radiomics with clinical parameters, deep learning-derived features, and physiological measurements such as electrocardiographic-based markers. The proposed methodological solutions are tested on two clinically relevant cardiovascular issues: cardiac disease phenotyping and patient risk stratification in coronary artery disease. The first application aims to enhance diagnostic accuracy and provide insights into disease patterns by differentiating among complex cardiac conditions including cardiac amyloidosis, aortic stenosis, hypertrophic cardiomyopathy, cardiac sarcoidosis, and arrhythmogenic right ventricular cardiomyopathy, while the second focuses on patient risk stratification in coronary artery disease, one of the leading causes of mortality and disability worldwide. With these methodological developments, the presented work contributes to fill the gap between research advances and clinical applications, potentially enhancing the diagnostic precision, prognostic value, and treatment planning capabilities of cardiovascular imaging.
Le malattie cardiovascolari rappresentano la principale causa di mortalità globale, causando 8,9 milioni di decessi annualmente. Nonostante i notevoli progressi nelle tecnologie di imaging, come la tomografia computerizzata cardiaca e la risonanza magnetica cardiaca, l'interpretazione di queste modalità si basa ancora sulla valutazione visiva soggettiva da parte dei clinici. In questo contesto, la radiomica ha acquisito grande interesse nel campo cardiovascolare, offrendo una soluzione non invasiva mirata all'estrazione di caratteristiche quantitative dalle immagini mediche, trasformando le informazioni visive in dati numerici che possono essere elaborati e interpretati attraverso metodi di intelligenza artificiale. Nonostante il potenziale dimostrato nella classificazione delle malattie, nella caratterizzazione delle placche e nella predizione degli esiti, la radiomica affronta ancora sfide significative per l'integrazione clinica, tra cui scarsa riproducibilità, mancanza di standardizzazione e limitata robustezza. Considerando queste lacune, questa tesi si propone di sviluppare e validare soluzioni metodologiche avanzate per la radiomica cardiaca, investigando al contempo applicazioni cardiovascolari clinicamente rilevanti. La ricerca si concentra su tre sviluppi metodologici chiave: (i) progettare una pipeline standardizzata per lo sviluppo di modelli radiomici cardiaci con metodi robusti di estrazione e selezione delle caratteristiche; (ii) implementare strategie innovative di data augmentation per superare le limitazioni legate alle dimensioni dei dataset; e (iii) definire un framework comprensivo per l'integrazione multimodale che combini la radiomica con parametri clinici, caratteristiche derivate dal deep learning e misurazioni fisiologiche come i marcatori basati sull'elettrocardiografia. Le soluzioni metodologiche proposte vengono testate su due problematiche cardiovascolari clinicamente rilevanti: la fenotipizzazione delle malattie cardiache e la stratificazione del rischio dei pazienti nella malattia coronarica. La prima applicazione mira a migliorare l'accuratezza diagnostica e fornire intuizioni sui pattern di malattia differenziando tra condizioni cardiache complesse, incluse l'amiloidosi cardiaca, la stenosi aortica, la cardiomiopatia ipertrofica, la sarcoidosi cardiaca e la cardiomiopatia aritmogena del ventricolo destro, mentre la seconda si concentra sulla stratificazione del rischio dei pazienti nella malattia coronarica, una delle principali cause di mortalità e disabilità a livello mondiale. Con questi sviluppi metodologici, il lavoro presentato contribuisce a colmare il divario tra i progressi della ricerca e le applicazioni cliniche, potenzialmente migliorando la precisione diagnostica, il valore prognostico e le capacità di pianificazione del trattamento dell'imaging cardiovascolare.
Methodological advancements in cardiovascular radiomics for enhanced disease phenotyping and risk profiling
LO IACONO, FRANCESCA
2024/2025
Abstract
Cardiovascular diseases are the leading cause of global mortality, accounting for 8.9 million deaths annually. Despite remarkable advancements in imaging technologies, such as cardiac computed tomography and cardiac magnetic resonance, interpretation of these modalities still relies on subjective visual assessment by clinicians. In this framework, radiomics has gained high interest in the cardiovascular field offering a non-invasive solution aimed at extracting quantitative features from medical images, transforming visual information into numerical data that can be processed and interpreted through artificial intelligence methods. Despite demonstrated potential in disease classification, plaque characterization, and outcome prediction, radiomics still faces significant challenges to clinical integration, including poor reproducibility, lack of standardization, and limited robustness. Given these gaps, this thesis aims to develop and validate advanced methodological solutions for cardiac radiomics while investigating clinically relevant cardiovascular applications. The research focuses on three key methodological developments: (i) designing a standardized pipeline for cardiac radiomic model development with robust feature extraction and selection methods; (ii) implementing novel data augmentation strategies to overcome dataset size limitations; and (iii) defining a comprehensive framework for multimodal integration that combines radiomics with clinical parameters, deep learning-derived features, and physiological measurements such as electrocardiographic-based markers. The proposed methodological solutions are tested on two clinically relevant cardiovascular issues: cardiac disease phenotyping and patient risk stratification in coronary artery disease. The first application aims to enhance diagnostic accuracy and provide insights into disease patterns by differentiating among complex cardiac conditions including cardiac amyloidosis, aortic stenosis, hypertrophic cardiomyopathy, cardiac sarcoidosis, and arrhythmogenic right ventricular cardiomyopathy, while the second focuses on patient risk stratification in coronary artery disease, one of the leading causes of mortality and disability worldwide. With these methodological developments, the presented work contributes to fill the gap between research advances and clinical applications, potentially enhancing the diagnostic precision, prognostic value, and treatment planning capabilities of cardiovascular imaging.File | Dimensione | Formato | |
---|---|---|---|
Thesis_PhD_Lo_Iacono.pdf
non accessibile
Dimensione
18.39 MB
Formato
Adobe PDF
|
18.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239739