In this thesis, we investigate how targeted interventions can steer the average opinion of a network by leveraging different centrality measures. We examine a range of well-established centrality measures—degree, strength, PageRank, betweenness, k- and s-coreness—as well as a random-placement baseline and one less explored metric, salience, a parameter-free measure grounded in the network’s intrinsic topology. Experiments are conducted on LFR benchmark graphs—chosen for their scale-free degree and weight distributions and explicit community structure—using the deterministic continuous-opinion Hegselmann–Krause model. We simulate “stubborn agents” (nodes with zero confidence range) injected statically or dynamically at proportions of 0.1%, 1%, and 5%, and evaluate each strategy via average opinion shift, opinion variance, convergence rate, and the fraction of nodes drawn near the stubborn agents. Additionally, community‐influence experiments are conducted, assessing each community’s average opinion distribution and the distribution of deviations between community and global average opinions across individual simulations. Our results show that salience consistently outperforms other measures at low intervention levels, while dynamic strategies generally achieve larger opinion shifts than static ones but converge more slowly. Surprisingly, random placement also yields substantial gains over the uninfluenced baseline. We conclude by outlining defense strategies against such influence attacks, and propose future work on community-targeted interventions and optimized dynamic trajectories.
In questa tesi si indaga come interventi mirati possano orientare l’opinione media di una rete sfruttando diverse misure di centralità. Vengono analizzate alcune tra le misure di centralità più consolidate—grado, strength, PageRank, betweenness, k- e s-coreness—insieme a una baseline basata su posizionamento casuale e a una metrica meno esplorata, la salienza, una misura priva di parametri fondata sulla topologia intrinseca della rete. Gli esperimenti sono condotti su grafi benchmark LFR—scelti per la loro distribuzione scale-free di gradi e pesi, e per la presenza esplicita di struttura comunitaria—utilizzando il modello deterministico a opinione continua di Hegselmann–Krause. Si simulano “agenti ostinati” (nodi con raggio di confidenza nullo) iniettati staticamente o dinamicamente in proporzioni pari allo 0.1%, 1% e 5%, valutando ciascuna strategia attraverso lo spostamento dell’opinione media, la varianza delle opinioni, il tasso di convergenza e la frazione di nodi attratti dagli agenti ostinati. Vengono inoltre condotti esperimenti di influenza a livello comunitario, analizzando la distribuzione delle opinioni medie per ciascuna comunità e la distribuzione delle deviazioni tra media comunitaria e media globale nelle singole simulazioni. I risultati mostrano che la salienza supera sistematicamente le altre misure ai bassi livelli di intervento, mentre le strategie dinamiche generano in media spostamenti di opinione maggiori rispetto a quelle statiche, pur convergendo più lentamente. In modo sorprendente, anche il posizionamento casuale produce guadagni significativi rispetto alla baseline priva di interventi. In conclusione, vengono delineate strategie difensive contro questi attacchi di influenza e si propongono futuri sviluppi incentrati su interventi mirati a livello comunitario e traiettorie dinamiche ottimizzate.
Driving opinions in social networks through salient agents
TARANTINO, PAOLO
2024/2025
Abstract
In this thesis, we investigate how targeted interventions can steer the average opinion of a network by leveraging different centrality measures. We examine a range of well-established centrality measures—degree, strength, PageRank, betweenness, k- and s-coreness—as well as a random-placement baseline and one less explored metric, salience, a parameter-free measure grounded in the network’s intrinsic topology. Experiments are conducted on LFR benchmark graphs—chosen for their scale-free degree and weight distributions and explicit community structure—using the deterministic continuous-opinion Hegselmann–Krause model. We simulate “stubborn agents” (nodes with zero confidence range) injected statically or dynamically at proportions of 0.1%, 1%, and 5%, and evaluate each strategy via average opinion shift, opinion variance, convergence rate, and the fraction of nodes drawn near the stubborn agents. Additionally, community‐influence experiments are conducted, assessing each community’s average opinion distribution and the distribution of deviations between community and global average opinions across individual simulations. Our results show that salience consistently outperforms other measures at low intervention levels, while dynamic strategies generally achieve larger opinion shifts than static ones but converge more slowly. Surprisingly, random placement also yields substantial gains over the uninfluenced baseline. We conclude by outlining defense strategies against such influence attacks, and propose future work on community-targeted interventions and optimized dynamic trajectories.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Magistrale___Paolo_Tarantino.pdf
accessibile in internet per tutti
Descrizione: Tesi Magistrale
Dimensione
5.92 MB
Formato
Adobe PDF
|
5.92 MB | Adobe PDF | Visualizza/Apri |
|
Executive_Summary___Paolo_Tarantino.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239764