In this thesis, self-assembling membranes of sulfonated graphene oxide (SGO X) have been prepared, using six different sulfuric acid-GO molar ratios, i.e. X = 1, 2.5, 5, 10, 15, 20. They are being studied as possible new proton exchange membranes (PEM) for PEM fuel cells and as suitable substitutes for Nafion®, the most commercially popular material for this type of application. Despite its excellent proton conductivity and good water permeability, this fluoropolymer's performance deteriorates significantly at high temperatures and low humidity. Besides that, it belongs to a class of highly polluting materials (PFAS). Through the addition of sulfonic acid groups (–SO3H) into the basic structure of GO, containing other functional groups (-OH, -COOH), it is possible to obtain membranes with excellent water retention and therefore an effective transport of protons. SEM, EDX and ATR-FTIR spectroscopies were used to evaluate the success of sulfonation and to determine the composition of the samples. A tensile test of the specimens was carried out to mechanically characterize the materials. Finally, the membranes were subjected to IEC measurements, electrochemical impedance spectroscopy and accelerated heat-treatment cycles to evaluate their ex-situ behavior by calculating their ion exchange capacity and proton conductivity. It was found that SGO 10 performs better than pure GO and Nafion® 212 in terms of internal resistance to proton transport, while SGO 5 is the most resistant to accelerated thermal stresses. Further investigations are needed regarding the refinement of the composition and their functional properties, so as to being able to characterize them through in-situ tests.
In questa tesi sono state preparate membrane autoassemblanti di ossido di grafene solfonato (SGO X), utilizzando sei diversi rapporti molari acido solforico-GO, ovvero X = 1, 2.5, 5, 10, 15, 20. Questi materiali vengono analizzati come potenziali membrane a scambio protonico (PEM) per celle a combustibile PEM e come possibili sostituti per Nafion®, ®, il materiale più impiegato e diffuso commercialmente in questo ambito. Nonostante l'eccellente conduttività protonica e la buona permeabilità all'acqua, le prestazioni di questo fluoropolimero peggiorano in modo significativo ad alte temperature e a bassa umidità. Oltre a ciò, esso appartiene ad una classe di materiali altamente inquinanti (PFAS). Attraverso l'aggiunta di gruppi acido solfonico (–SO3H) nella struttura basica del GO, contenente altri gruppi funzionali (-OH, -COOH), è possibile ottenere membrane con un'ottima ritenzione idrica e quindi un efficace trasporto di protoni. Le spettroscopie SEM, EDX e ATR-FTIR sono state utilizzate per valutare la buona riuscita della solfonazione e per determinare la composizione dei campioni. È stata effettuata una prova di trazione dei provini per caratterizzare meccanicamente i materiali. Infine, le membrane sono state sottoposte a misure IEC, spettroscopia di impedenza elettrochimica e cicli di trattamento termico accelerato per valutare il loro comportamento ex-situ calcolando la loro capacità di scambio ionico e la conducibilità protonica. È stato riscontrato che SGO 10 si comporta meglio del GO puro e del Nafion® 212 in termini di resistenza interna al trasporto di protoni, mentre SGO 5 è il più resistente alle sollecitazioni termiche accelerate. Sono necessarie ulteriori indagini per quanto riguarda l'affinamento della composizione e le loro proprietà funzionali, in modo da poterle caratterizzare attraverso prove in situ.
Characterization and electrochemical analysis of SGO membranes for PEM fuel cells: morphology, composition and proton transport properties
Artuso, Federica
2024/2025
Abstract
In this thesis, self-assembling membranes of sulfonated graphene oxide (SGO X) have been prepared, using six different sulfuric acid-GO molar ratios, i.e. X = 1, 2.5, 5, 10, 15, 20. They are being studied as possible new proton exchange membranes (PEM) for PEM fuel cells and as suitable substitutes for Nafion®, the most commercially popular material for this type of application. Despite its excellent proton conductivity and good water permeability, this fluoropolymer's performance deteriorates significantly at high temperatures and low humidity. Besides that, it belongs to a class of highly polluting materials (PFAS). Through the addition of sulfonic acid groups (–SO3H) into the basic structure of GO, containing other functional groups (-OH, -COOH), it is possible to obtain membranes with excellent water retention and therefore an effective transport of protons. SEM, EDX and ATR-FTIR spectroscopies were used to evaluate the success of sulfonation and to determine the composition of the samples. A tensile test of the specimens was carried out to mechanically characterize the materials. Finally, the membranes were subjected to IEC measurements, electrochemical impedance spectroscopy and accelerated heat-treatment cycles to evaluate their ex-situ behavior by calculating their ion exchange capacity and proton conductivity. It was found that SGO 10 performs better than pure GO and Nafion® 212 in terms of internal resistance to proton transport, while SGO 5 is the most resistant to accelerated thermal stresses. Further investigations are needed regarding the refinement of the composition and their functional properties, so as to being able to characterize them through in-situ tests.File | Dimensione | Formato | |
---|---|---|---|
Artuso_2025_07_executive_summary_definitivo.pdf
non accessibile
Descrizione: Artuso_2025_07_executive_summary
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
Artuso_2025_07_tesi_definitivo.pdf
non accessibile
Descrizione: Artuso_2025_07_tesi
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239778