Heart Failure (HF) is a chronic and progressive condition often marked by repeated hospitalizations and a high risk of mortality. Capturing the joint evo- lution of these clinical events is crucial for improving risk assessment and informing healthcare strategies. This thesis explores the joint modeling of recurrent hospi- talizations and mortality in patients affected by Heart Failure (HF), through the development of a novel bivariate frailty framework. Building on previous work with univariate discrete frailty models, we propose a Joint Model with Bivariate Discrete Frailties, introducing two latent random effects, one for each process, to better capture unobserved heterogeneity and allow for more flexible dependency structures. The model is estimated via an Expectation-Maximization algorithm and applied to administrative healthcare data from the Lombardy region, incorpo- rating clinically relevant covariates such as age, sex, comorbidities, and adherence to ACE inhibitor therapy. A simulation study complements the real-data analysis, evaluating the model’s ability to recover latent structures and accurately estimate parameters across various scenarios. Results demonstrate that the proposed ap- proach enhances interpretability and supports effective patient stratification.
Lo Scompenso Cardiaco è una condizione cronica e progressiva spesso caratterizzata da ricoveri ospedalieri ripetuti e da un elevato rischio di mortalità. Catturare l’evoluzione congiunta di questi eventi clinici è cruciale per migliorare la valutazione del rischio e orientare le strategie sanitarie. Questa tesi esplora la modellazione congiunta delle ospedalizzazioni ricorrenti e della mortalità per tutte le cause in pazienti affetti da Scompenso Cardiaco, attraverso lo sviluppo di un nuovo framework di frailty bivariata. Basandoci su precedenti lavori con modelli di frailty discrete univariate, proponiamo un Modello Congiunto con Frailty Discrete Bi- variate, introducendo due effetti casuali latenti, uno per ciascun processo, per catturare meglio l’eterogeneità non osservata e consentire strutture di dipendenza più flessibili. Il modello è stimato tramite un algoritmo Expectation-Maximization e applicato a dati amministrativi sanitari della regione Lombardia, incorporando co- variate clinicamente rilevanti come età, sesso, comorbidità e aderenza alla terapia con ACE-inibitori. Uno studio di simulazione completa l’analisi su dati reali, valutando la capacità del modello di recuperare strutture latenti e stimare accuratamente i parametri attraverso vari scenari. I risultati dimostrano che l’approccio proposto migliora l’interpretabilità e supporta una stratificazione efficace dei pazienti.
Joint modelling of re-hospitalization and mortality through discrete bivariate frailty in heart failure patients
PREKAZI, ARDIANA
2024/2025
Abstract
Heart Failure (HF) is a chronic and progressive condition often marked by repeated hospitalizations and a high risk of mortality. Capturing the joint evo- lution of these clinical events is crucial for improving risk assessment and informing healthcare strategies. This thesis explores the joint modeling of recurrent hospi- talizations and mortality in patients affected by Heart Failure (HF), through the development of a novel bivariate frailty framework. Building on previous work with univariate discrete frailty models, we propose a Joint Model with Bivariate Discrete Frailties, introducing two latent random effects, one for each process, to better capture unobserved heterogeneity and allow for more flexible dependency structures. The model is estimated via an Expectation-Maximization algorithm and applied to administrative healthcare data from the Lombardy region, incorpo- rating clinically relevant covariates such as age, sex, comorbidities, and adherence to ACE inhibitor therapy. A simulation study complements the real-data analysis, evaluating the model’s ability to recover latent structures and accurately estimate parameters across various scenarios. Results demonstrate that the proposed ap- proach enhances interpretability and supports effective patient stratification.File | Dimensione | Formato | |
---|---|---|---|
Master_Thesis__Ardiana_Prekazi__Article.pdf
solo utenti autorizzati a partire dal 23/06/2026
Dimensione
3.27 MB
Formato
Adobe PDF
|
3.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239785