Lattice structures are architected cellular materials whose geometries enable unique mechanical and thermal properties. Thermal applications are one of the major fields of interest for such structures, as their large surface-to-volume ratio and complex shapes enhance heat transfer, while also enabling multifunctional properties. However, several open points in both thermal and mechanical aspects need to be addressed to facilitate their widespread adoption in the industrial field. The following thesis is divided into two parts related to two different thermo-mechanical applications of lattice structures, where each part addresses open issues of both thermal and mechanical aspects. \\ The first part focuses on Triply Periodic Minimal Surface (TPMS)-based heat exchangers with the aim to provide tools and methodologies for the thermal design and the mechanical assessment of these innovative heat exchangers. A convective heat transfer correlation for different TPMS structures in turbulent flow condition is investigated with the use of CFD simulations, while multi-material solutions, allowed by innovative additive manufacturing technologies, are explored to enhance thermal conductivity of the heat exchanger. Concerning the mechanical aspects, the focus is placed on the functional failure condition, namely the propagation of fatigue cracks across the entire wall thickness of the TPMS structure. This was addressed through the use of the Direct Current Potential Drop (DCPD) method for fatigue test monitoring, coupled with an in-house developed LabVIEW program for real-time data acquisition and analysis, effectively mitigating noise and temperature-related effects. Furthermore, the application of DCPD provided additional insights into the different stages of fatigue damage in lattice structures.\\ The second part of the thesis presents a case study on embedded lattice-based heat pipes for the cooling of an electronic module within a satellite power unit. The selection of the most suitable porous structure for the heat pipe's wick was conducted in a numerical and experimental fashion, while the thermal performance of the heat pipes featuring different porous structures was evaluated experimentally. The mechanical analysis focused on the development and experimental validation through a component-like sample of a fracture mechanics-based life prediction model, employed to assess the structural integrity of both the heat pipe and the satellite module under vibration loads induced by the space launch. This life prediction model was further used in an iterative design process of the electronic module, aimed at reducing mass while maintaining sufficient safety margins. Additionally, the structural integrity of the module against internal burst pressure was assessed using a methodology based on the Failure Assessment Diagram.
Le strutture lattice sono materiali cellulari ingegnerizzati la cui geometria consente proprietà meccaniche e termiche atipiche. Le applicazioni termiche rappresentano uno dei principali ambiti di interesse per queste strutture, poiché l’elevato rapporto superficie/volume e le forme complesse favoriscono il trasferimento di calore, permettendo al contempo proprietà multifunzionali. Tuttavia, diversi aspetti, sia dal punto di vista termico che meccanico, sono ancora irrisolti e devono essere affrontati per facilitare l’adozione di queste strutture su larga scala in ambito industriale. La presente tesi è suddivisa in due parti, ciascuna dedicata a differenti applicazioni termo-meccaniche delle strutture lattice, affrontando per entrambe problematiche di natura termica e meccanica. La prima parte è focalizzata sugli scambiatori di calore basati su superfici minime triplicemente periodiche (TPMS), con l’obiettivo di fornire strumenti e metodologie per la progettazione termica e la valutazione meccanica di questi innovativi scambiatori. Una correlazione per il trasferimento di calore convettivo in condizioni di flusso turbolento per diverse strutture TPMS è stata studiata mediante simulazioni CFD, mentre vengono esplorate soluzioni multi-materiale — rese possibili dalle tecnologie innovative di manifattura additiva — per migliorare la conducibilità termica dello scambiatore. Per quanto riguarda gli aspetti meccanici, l’attenzione è rivolta alla condizione di cedimento funzionale, ovvero la propagazione di cricche da fatica attraverso l’intero spessore della parete della struttura TPMS. Questo problema è stato affrontato attraverso l’impiego del metodo della caduta di potenziale in corrente continua (DCPD) per il monitoraggio dei test di fatica, combinato con un programma sviluppato internamente in LabVIEW per l’acquisizione e l’analisi dei dati in tempo reale, riducendo efficacemente rumore e effetti legati alla temperatura. Inoltre, l’applicazione del metodo DCPD ha fornito ulteriori informazioni sulle diverse fasi del danneggiamento da fatica nelle strutture lattice. La seconda parte della tesi presenta uno studio di caso relativo a heat pipes basate su strutture lattice integrate per il raffreddamento di un modulo elettronico all’interno di un case satellitare. La selezione della struttura porosa più adatta per il wick dell'heat pipe è stata condotta sia numericamente che sperimentalmente, mentre le prestazioni termiche delle heat pipes con differenti strutture porose sono state valutate sperimentalmente. L’analisi meccanica si è concentrata sullo sviluppo e sulla validazione sperimentale, mediante un provino rappresentativo del componente, di un modello di previsione della vita utile basato sulla meccanica della frattura, impiegato per valutare l’integrità strutturale del theat pipe e del modulo satellitare sotto carichi da vibrazione indotti dal lancio spaziale. Questo modello è stato inoltre utilizzato in un processo iterativo di progettazione del modulo elettronico, mirato alla riduzione della massa mantenendo margini di sicurezza adeguati. Infine, l’integrità strutturale del modulo rispetto alla pressione interna di scoppio è stata valutata tramite una metodologia basata sul Failure Assessment Diagram.
Thermal and structural integrity analysis of lattice structures for advanced thermo-mechanical applications
Brambati, Giovanni
2024/2025
Abstract
Lattice structures are architected cellular materials whose geometries enable unique mechanical and thermal properties. Thermal applications are one of the major fields of interest for such structures, as their large surface-to-volume ratio and complex shapes enhance heat transfer, while also enabling multifunctional properties. However, several open points in both thermal and mechanical aspects need to be addressed to facilitate their widespread adoption in the industrial field. The following thesis is divided into two parts related to two different thermo-mechanical applications of lattice structures, where each part addresses open issues of both thermal and mechanical aspects. \\ The first part focuses on Triply Periodic Minimal Surface (TPMS)-based heat exchangers with the aim to provide tools and methodologies for the thermal design and the mechanical assessment of these innovative heat exchangers. A convective heat transfer correlation for different TPMS structures in turbulent flow condition is investigated with the use of CFD simulations, while multi-material solutions, allowed by innovative additive manufacturing technologies, are explored to enhance thermal conductivity of the heat exchanger. Concerning the mechanical aspects, the focus is placed on the functional failure condition, namely the propagation of fatigue cracks across the entire wall thickness of the TPMS structure. This was addressed through the use of the Direct Current Potential Drop (DCPD) method for fatigue test monitoring, coupled with an in-house developed LabVIEW program for real-time data acquisition and analysis, effectively mitigating noise and temperature-related effects. Furthermore, the application of DCPD provided additional insights into the different stages of fatigue damage in lattice structures.\\ The second part of the thesis presents a case study on embedded lattice-based heat pipes for the cooling of an electronic module within a satellite power unit. The selection of the most suitable porous structure for the heat pipe's wick was conducted in a numerical and experimental fashion, while the thermal performance of the heat pipes featuring different porous structures was evaluated experimentally. The mechanical analysis focused on the development and experimental validation through a component-like sample of a fracture mechanics-based life prediction model, employed to assess the structural integrity of both the heat pipe and the satellite module under vibration loads induced by the space launch. This life prediction model was further used in an iterative design process of the electronic module, aimed at reducing mass while maintaining sufficient safety margins. Additionally, the structural integrity of the module against internal burst pressure was assessed using a methodology based on the Failure Assessment Diagram.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_Thesis_Brambati.pdf
non accessibile
Dimensione
155.38 MB
Formato
Adobe PDF
|
155.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239787