With the continuous growth of cities and buildings, the demand for efficient and high performing structural engineering solutions is increasing. One of the most critical phases in the design process is the preliminary decision-making regarding the structural system, geometry, and profile selection. These early decisions significantly influence the project’s material requirements, construction scope, and associated costs—making it essential for stakeholders to quickly understand the required investment in terms of labor, materials, and resources. Therefore, it is crucial that this phase be completed rapidly, efficiently, and with a high degree of structural reliability. This thesis presents a parametric framework for the preliminary design and optimization of steel portal frame structures using Building Information Modeling (BIM) tools. The research focuses on integrating visual programming—specifically the Dynamo visual coding environment within Autodesk Revit—with Python scripting to automate the selection, verification, and optimization of steel profiles based on structural performance and weight estimation criteria of different available steel grades. The developed workflow supports the evaluation of structural elements against both Ultimate Limit States (ULS) and Serviceability Limit States (SLS) in full compliance with Eurocode 3. The process automates key calculations such as spacing, stress verification, and checks for deflection and buckling resistance. Additionally, the decision-making methodology incorporates a weight optimization module, ensuring that the lightest viable structural solution is selected as the best one. The final outputs include a reference frame with related placement of grids and levels within the Revit workspace, as well as an Excel spreadsheet summarizing verification results—greatly enhancing design traceability and transparency. Furthermore, the system allows users to adjust key parameters—such as geometry, slenderness, and load conditions— directly from Dynamo Player, without entering the Dynamo environment. This makes the workflow accessible and user-friendly, even for structural engineers without prior experience in visual programming, speeding up the structure BIM modeling process and allowing a back and forth iterative procedure where the key parameters like geometry and load combinations are taken into consideration.This thesis presents a parametric framework for the preliminary design and optimization of steel frame structures using Building Information Modeling (BIM) tools. The research focuses on integrating visual programming—specifically the Dynamo visual coding environment within Autodesk Revit—with Python scripting to automate the selection, verification, and optimization of steel profiles based on structural performance and weight estimation criteria. The developed workflow supports the evaluation of structural elements against both Ultimate Limit States (ULS) and Serviceability Limit States (SLS) in full compliance with Eurocode 3. The process automates key calculations such as spacing, stress verification, and checks for deflection and buckling resistance. Additionally, the decision-making methodology incorporates a weight optimization module, ensuring that the lightest viable structural solution is selected as the most economical option. The final outputs include a reference model and the placement of grids and levels within the Revit workspace, as well as an Excel spreadsheet summarizing verification results—greatly enhancing design traceability and transparency. Furthermore, the system allows users to adjust key parameters—such as geometry, slenderness, and load conditions—directly from Dynamo Player, without entering the Dynamo environment. This makes the workflow accessible and user-friendly, even for structural engineers without prior experience in visual programming.
Con la crescita continua delle città e degli edifici, aumenta la domanda di soluzioni ingegneristiche strutturali efficienti e ad alte prestazioni. Una delle fasi più critiche del processo di progettazione è la decisione preliminare riguardante il sistema strutturale, la geometria e la selezione dei profili. Queste decisioni iniziali influenzano in modo significativo i requisiti in termini di materiali, l’entità della costruzione e i costi associati, rendendo essenziale per le parti interessate comprendere rapidamente l'investimento necessario in termini di manodopera, materiali e risorse. È quindi fondamentale che questa fase venga completata in modo rapido, efficiente e con un elevato grado di affidabilità strutturale. Questa tesi presenta una metodologia per la progettazione preliminare e l'ottimizzazione di strutture in acciaio intelaiate, utilizzando strumenti BIM (Building Information Modeling). La ricerca si concentra sull’integrazione della programmazione visuale — nello specifico in ambiente Dynamo integrato in Autodesk Revit — con codice Python per automatizzare la selezione, la verifica e l’ottimizzazione dei profili in acciaio in base alle prestazioni strutturali e ai criteri di stima del peso totale della struttura progettata. Il flusso di lavoro sviluppato supporta la valutazione degli elementi strutturali rispetto agli Stati Limite Ultimo (ULS) e agli Stati Limite di Esercizio (SLS), in piena conformità con l’Eurocodice 3. Il processo automatizza calcoli chiave come l’interspazio tra elementi, la verifica delle tensioni e i controlli su deformazioni e instabilità. Inoltre, la metodologia decisionale include un modulo di ottimizzazione, assicurando che venga selezionata la soluzione strutturale più leggera possibile. In output si ottengono un progetto Revit già predisposto con riferimenti geometrici quali griglie e livelli, nonché un foglio Excel che riassume i risultati delle verifiche delle varie opzioni (in termini di classi di acciaio selezionabili) — migliorando notevolmente la tracciabilità e la trasparenza del processo di ottimizzazione. Inoltre, il sistema consente agli utenti di modificare parametri chiave — come la geometria, la snellezza e le condizioni di carico — direttamente da Revit tramite Dynamo Player, senza dover accedere all’ambiente di sviluppo di Dynamo. Ciò rende il flusso di lavoro accessibile e intuitivo anche per ingegneri strutturali privi di esperienza nella programmazione visuale e velocizzando l’intero processo di modellazione BIM della configurazoine ottimale.
Parametric optimization of steel frame structures with visual programming and python scripting in BIM environment
DANIYAROV, AIDYN
2024/2025
Abstract
With the continuous growth of cities and buildings, the demand for efficient and high performing structural engineering solutions is increasing. One of the most critical phases in the design process is the preliminary decision-making regarding the structural system, geometry, and profile selection. These early decisions significantly influence the project’s material requirements, construction scope, and associated costs—making it essential for stakeholders to quickly understand the required investment in terms of labor, materials, and resources. Therefore, it is crucial that this phase be completed rapidly, efficiently, and with a high degree of structural reliability. This thesis presents a parametric framework for the preliminary design and optimization of steel portal frame structures using Building Information Modeling (BIM) tools. The research focuses on integrating visual programming—specifically the Dynamo visual coding environment within Autodesk Revit—with Python scripting to automate the selection, verification, and optimization of steel profiles based on structural performance and weight estimation criteria of different available steel grades. The developed workflow supports the evaluation of structural elements against both Ultimate Limit States (ULS) and Serviceability Limit States (SLS) in full compliance with Eurocode 3. The process automates key calculations such as spacing, stress verification, and checks for deflection and buckling resistance. Additionally, the decision-making methodology incorporates a weight optimization module, ensuring that the lightest viable structural solution is selected as the best one. The final outputs include a reference frame with related placement of grids and levels within the Revit workspace, as well as an Excel spreadsheet summarizing verification results—greatly enhancing design traceability and transparency. Furthermore, the system allows users to adjust key parameters—such as geometry, slenderness, and load conditions— directly from Dynamo Player, without entering the Dynamo environment. This makes the workflow accessible and user-friendly, even for structural engineers without prior experience in visual programming, speeding up the structure BIM modeling process and allowing a back and forth iterative procedure where the key parameters like geometry and load combinations are taken into consideration.This thesis presents a parametric framework for the preliminary design and optimization of steel frame structures using Building Information Modeling (BIM) tools. The research focuses on integrating visual programming—specifically the Dynamo visual coding environment within Autodesk Revit—with Python scripting to automate the selection, verification, and optimization of steel profiles based on structural performance and weight estimation criteria. The developed workflow supports the evaluation of structural elements against both Ultimate Limit States (ULS) and Serviceability Limit States (SLS) in full compliance with Eurocode 3. The process automates key calculations such as spacing, stress verification, and checks for deflection and buckling resistance. Additionally, the decision-making methodology incorporates a weight optimization module, ensuring that the lightest viable structural solution is selected as the most economical option. The final outputs include a reference model and the placement of grids and levels within the Revit workspace, as well as an Excel spreadsheet summarizing verification results—greatly enhancing design traceability and transparency. Furthermore, the system allows users to adjust key parameters—such as geometry, slenderness, and load conditions—directly from Dynamo Player, without entering the Dynamo environment. This makes the workflow accessible and user-friendly, even for structural engineers without prior experience in visual programming.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Daniyarov.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: This thesis presents a parametric framework for the preliminary design and optimization of steel portal frame structures using Building Information Modeling (BIM) tools.
Dimensione
7.93 MB
Formato
Adobe PDF
|
7.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239812